1.0

1.1

1.2

11/15/67 ‘
H. Sturgis

What follows is a description of a basic time sharing systems, as
seen by a knowledgeable user. There are three basic kinds of objects,

and some actions that can be performed on them.

Data Block -
A data block is a finite sequence of §0-bif words. They are numbered

0 through N-1 for a data block of N words.

User Process

A user process consists of two logical‘flags and a sequence of quad-
ruples. The tﬁo flags are called the 'ready' and 'wakeup' flags. The
sequence of quadruples is called the memory map. Each quadruple in the
map consists of a write bit, a CPU address, the name of a data block
and a position in the data block.

From time to time, if the ready flag is on, a series of events takes

place. For each quadruple in the map of the process, the indicated word

in the data block is copied to a cell in the CPU memory whose address

is the address in the quadruple. When all words have been copied, the

first 16 words of the CPU memory are used as an exchange jump package.

After some time has elapsed an exchange jump is again performed on the

first 16 words. Then for each quadruple in the map of the process, whose

write bit is 'still on, the word in the CPU memory at "the CPU address of

the quadruple is copied to the indicated word in the data block of the

quadruple. L

1.3

1.4

Notice that the words do not actually have to be copied to the CPU

started at address 0, but the same results will be obtained if they
S'tar\'-"j/ .

are copied sharting at any relative address, if the first 16 words

are suitably modified before and after the exchange jumps.

System Process

A system process consists of a ready flag and a wake up flag, -es—fer

6-USer-process, a type and a state. The state can change only when

the ready flag is on.

_ Monitor Requests

Either kind of process.whose réady flag is on is said to be a running
process. A running process may req%est certain actions to be done by
the system. These are called monitor requests and each is associafed
with some basic object. Details as to how a user process makes a monitor

request will be given later. Here we list the ﬁossible monitor requests.

A. Data Blocks
1. Create data block of N cells

2. Write a given K words from the process to the data block

starting at cell L. (L +K < N)

3. Read K words to the process from the data block starting

at cell L. (L+K < N)

2.0

B. User Processes

1. Create a user process with a given map
2. wake up the user process

1f ready then wakeup := true

else ready := true;
3. Block the user process

if wake up then wake up := false

else ready := false;
4. Clear the wake up flag

wake up := false

Note: 3 and 4 are usually done by a process to itself, while 2 is
usually done on some other process.

C. System Process

1. Create a system process of given type

2,3,4 as for a user process

Cxamples of Vi 0#“'“" d sysHen
A-possible—implementation- as seen by the user

We assume that the basic objects in the system are named by giving

positive integers. We also assume that a FORTRAN-callable subroutine

. is given for each of the monitor requests.

Al. CREATE D (NAME,CELLS)) ,
creates a data block of eedts cells and places thganame in name

covnvT
A2. WRITE D (NAME, START, WENT- FROM)
CounT VAnE
writes <ount words to data block of name name starting with cell

START Fhom
stert and taking words from array £xem.

A3.

B2.

B3.

B4,

Cl.

COunNT
READ D (NAME, START, WENE, TO)

COUNT NAME
reads eount words from data block of name -name

U (NAME, MAP, WENT)
creates a user process and places name in NAME. MAP is an array
S * (ounT

of S+4—eount words used to define the memory map as follows: each

consecutive group of 5 words defines a sequence of quadruples. If the

5 words are W,A,D,P,C then C quadruples are formed whose write

w w
bits are all true if w+# 0 and false if w = 0; whose data blocks
are all the block of name D; whose CPU addresses are A, A+l, ...,

bRock
A+C-1; and whose indicated data #hHhedk cells are P, P+1, ..., P+C-l.

The process always starts with the read and wake up flags off.
WAKE U (NAME)

wakes up user process of name NAME

BLOCK U

blocks its own process

CLEAR U

clears its own wake up flag

CREATE S (NAME, TYPE, D)

creates a system'process of type indicated by the integer Z;;i;
(It is assumed that some list of fypes is given.) Places the
name of the process in NAME. System processes are always started
with ready flag on and wake up flag off. D@E;assumed to name a
data block and the resulting system process will use that data

block to communicate with the user process.

™

2.1

c2.

.The

C3.

C4.

Low

WAKE S (NAME)

wakes up system process of name NAME.
following two will be only used in the description of system processes.

BLOCKS
blocks its own process
CLEARS

clears its own wake up flag

speed terminal communication (simple)

We assume the existence of two particular types of system processes,

which will be described by FORTRAN programs, and then show how a FORTRAN

program can be written to communicate with a terminal.

A.

A device input process

We assume that every time a character comes in it is placed in
word CHAR, that word count is incremented by 1 and that the pro-
cess is awakened, and that the data block used for communication
is named in D.

COUNT = 0
10 CALL BLOcks £ €°*T
IF (WRESE .EQ. 0) GO TO 10
CALL READ D(D,0,3,DATA)
12 IF(DATA(2) .NE. 0) GO TO 15
DATA(2) = 1
DATA(3) = CHAR
CALL WRITE D (D,0,3,DATA)

COUNT = 0 .
IF DATA(Z) .NE. 0) CALL WAKE U (DATA(1))
. GO TO 10 At
c
15 CALL BLOCKS
GO TO 12

This is a simple process, and does not detect the loss of a

character.

it o b

A device output process

This is similar to the input process. We assume the existence of
a lugical function WRITE(ggAR) which will, if possible, send

CHAR to the terminal and returns the value .TRUE. , or, if not

possible, will return the value .FALSE. . We assume this process

awakened each time it bgcomes gossn.ble forﬁn ghgracter to _Ig'gr sent.

10 CALL BLOCKS
CALL READ D (D,0,3,DATA)
IF (DATA(2) .EQ. 0) GO TO 10
12 IF (WRITE(DATA(3)) GO TO 15
CALL BLOCKS
GO TO 12
15 CALL WRITE D (D,1,0)
IF (DATA(l) .NE. 0) CALL WAKE U (DATA(1))
GO TO 10

-~ A)
Notice in both &# and B), how the process does not block if any

wake ups have occurred since the last block.

We now give 3 subroutines that can be written by a user for the

purpose of communicating with a teletype.

Cl. Create the system processes

We assume that variable TIN and TOUT contain the numbers of
the types of the appropriate teletype processes. We assume
parameter US contains the name of the user process.

SUBROUTINE CREATE (IND,INP,OUTD, OUTP, US)
INTEGER IND, INP, OUTD, OUTP, US
INTEGER DATA(3)

DATA DATA /0,0,0/

DATA(1) = US

CALL CREATE D (IND,3)

CALL WRITE D (IND, O,3,DATA)
CALL CREATES (INP, TIN, IND)
CALL CREATED (OUTD, 3)

CALL WRITED(OUTD, 0,3,DATA)

CALL CREATES (OUTP,TOUT,OUTD)
RETURN

END

P

c2.

C3.

Get a character

INTEGER FUNCTION GETCHAR(IND,INP)
INTEGER IND,INP
INTEGER DATA(3)

c
10 CALL READ D(IND,O,3,DATA)
IF (DATA(2) .NE. 0) GO TO 15
CALL BLOCK U
GO TO 10
C

15 CALL WRITE D(IND,1,0)
CALL AWAKES (INP)
GETCHR = DATA(3)
RETURN
END

Write a character

SUBROUTINE WRITE (OUTD, OUTP, CHAR)
INTEGER OUTD, OUTP
INTEGER DATA(3)

10 CALL READ D (OUTD, 0,3,DATA)
IF (DATA(2) .EQ. 0) GO TO 15
CALL BLOCK U

GO TO 10

c

15 DATA(2) =1
DATA(3) = CHAR

CALL WRITE D(OUTD, 0,3, DATA)
CALL AWAKES (OUTP)

RETURN

END

it it

I\

AY

HES
b

i

Vi
A

h

!

o

TTV oV

.ﬁ«/ /7),_/]/#"55’/’5

S vy

¥

]
s eseais e lme
/
-li_‘!é -“7/;.@
el)'*f’/‘) o~ L als T
c Lo . o
yrep it il T g iwe
J
A ';..,A,»,-,,«f;.‘; ic 3
o fe =
) J—(’/)rr'f/’) i< ine
(_;ha.'{/ oy
oo A -;0/:/)‘ o

r
o dy Flaj g"'/

wake v

Lbiloe &

-
:,amuwl';f 4 Fegem &L
{ A /

Jo 17 loa defelipe

,\,.IJA.P)J >3 o e Lo (1w

S

. e N
Q);w/_./a‘/, oVt O‘:“ Qb“j‘/; ;//0[<« < ‘{’ 793 ”f)L‘

bl i olhes /7.//"75‘ sk cosle sovk o sndee oz

‘a'l"-}'chlju‘/fé’{ b/d(‘(’J /at/)z' wabe "/’ ""‘% 4

>
e ke “p awolivow
r
oy e a glaln

1] 0
;J!.’\ et Brod &

N'.r(o

4///(.&"

iJJW""S_S

-~ v Sysitewm Pul=
preces bisin

Ty N NP IND NIAL o oVTD 0T TTye o7
; t o . r‘

Ju tat Systewm
Lilst e prebex

]9&'{;“ f'}s

'

: i
: 0 !
G :
el !
; 2 :
i vy
H Py !
N
L)
i
~
—bas /'\
N . H ! NS
; ! ’i\
! ﬁ .
!
< i
¢ i
> :
[i
; 4n |
. !
: ; ;
N ¢
; {
ot .
pre - ———— - .)
3o 2
‘i\ s ¢
)
| ws H
/ Cad
-{: P — - !
2 .
d l :
‘ i l : :
< | . . -
S : ! ; '
Z _— - e m e ald i
- i d :
: ; 3 :
: : e !
: ; j [;
- -
1 ! WS — v
; / ! - ‘
P ; At — N
i { N e e am e e - e - - w m— - el
: . d i
i ! l i ’
; f 7, i
: ' : ’r\./\/\/\/\,;‘
] i ¢ C i
; ¢ l ,
H o .
3 ; :
< v i
; ' s r
' : i
: . ; i
- ¥ ¢
‘ i
i :
; ;
i
;

T‘/}O)f“i c’.vz‘&ﬂl_s (

. S SR ——

e ~ .

" TL, e 4 f/{ ‘/7ﬂ,¢ P.Aé’”j)ﬁ/f ; 1 |

C r(@/‘.()q , ! ‘ . ; {
. f : ’ i
?‘7/4./‘,[o‘ﬁo\ charu 1}7(// : 1
: :

ovtpik oha C"”’*f:“‘{ Ce : if |

: i i
: ! v ¢ H
! R ‘ :
. H ¥
B . < H b
: N i
; ! :
!)
i ‘ i

¢ i

; !
!

