
TS Interrupt System

I ntroducti

June 23, 1969

The Interrupt System, which provides the sole interface between user processes

and the outside world, is divided into two parts, the Central portion consisting

of the code proper, and the PPU portion comprising the actual communication with

the external devices.

The Interrupt system uses several objects which reside in ECS:

1. Files and event channels, which provide the immediate interface between

ECS and the Interrupt System. They are. seen by user level processes

and appear just like ordinary files and event channels, except that

they are stationary in ECS.

2. Pseudo-processes, which are used by the Interrupt System to simulate

processes for hanging on event channels. (They are also used as a

convenient stora _ place for information not neing used.) Pseudo—

processes are ' transparent to user level processes.

I Central Memory Portion

There are two sections to the Central code of the Interrupt System. The

first, Initialization, sets up ECS at the beginning of time, . sets up a few some-

things in Central Memory and disappears. The second section consists of a

collection of routines which work with inidivudal devices, plus some miscellaneous

"stuff".

1.1 Initialization of ECS

The routine INTINIT constructs in ECS all objects needed by the Inter-

rupt System. This is . d9ne at the beginning of time so that they will be

in a position in ECS such that they never have to move. When INTINIT is

called, there must be no gaps in ECS.

INTINIT is called at 2 different times:

1. At INTINITA , early in initialization before more than a very few
things have been constructed. It is used to construct a file to con-
tain C-list indices into the waster C-list of interesting things con-
structed later.

TS Interrupt System -2

2. At INTINITB for the actual construction of objects. It first
constructs a file to be used for the interrupt queues needed by UNHUNGl.

(See 1.2.2) (No user ever sees this file, and in fact, its C-list
entry is destroyed.) It then calls the Device Routines to construct
the objects for each of the various kinds of devices. Currently there
are two separate kinds of devices: MUX and the simple devices.

The Device Routines actually use a collection of three subroutines, spe-

cially constructed for INTINIT, to do their work; i.e., to +construct the par-

ticular objects in ECS used by the Interrupt Routines.

MEC - This subroutine constructs an event channel and leaves the capa-
bility in the Master C-list. It is entered with the count of the
maximum number of events expected in the event channel at one time.

MPS - This subroutine constructs a pseudo--process. It is entered with
the size of the process in words. It makes no permanent C-list
entry; the C-list entry is destroyed at the end. It returns with
the absolute address of the pseudo-process in X5 and the MOT
index and unique name in X4 .

MFILE - This subroutine constructs a one level file with a data block whose
size is given in X6. It leaves the entry in the C-list and returns
with the absolute ECS address of the data block in X0.

Each type of device is considered as a class of objects, associated with

which is an interrupt queue and a file in ECS containing pointers to the pseudo-'

processes. (See Figure 1.) All of these are set up by the routine NEWCLASS,

which expects five parameters:

1. the location of the Interrupt Queue Index within the pseudo-process
for this class of objects,

2. the location in Central of a pointer in ECS to the file containing
the locations of pseudo--process,

3. the location in Central pointing to the interrupt queue for this.
class of devices in ECS,

4. the interrupt index for this class of devices,

w

and 5. the number of devices in the class.

In summary, the basic function of INTINIT is to create a file in ECS

available to user processes which contains the first C-list index of an object

belonging to each class of interrupt devices (INTINIA), to create a file

(never seen by a user process, in fact removed from the master C-list) which

TS Interrupt System -3

ECS

Central

i

File of interrupt
queues

(absolute address)

a. solute address)

File of
pseudo--
processes
(absolute)

Figure 1

Pseudo-~
process

3

Device File
C-list index
of 1st object
for this class
in Master C-list

interrupt index

contains the absolute addresses of the pseudo-processes used by those devices,

and finally, to create a pair of words in the file of interrupt queues used

for the interrupt queue for that class of devices.

TS Interrupt System -4

1.2 Interface between the Interrupt System Central Code and the ECS System
Central Code

1.2.1

HANG

Calls from the Interrupt System to the ECS System

This routine is called to hans a pseudo-process (or process

when called by other routines) on an event channel. It aspects

the following parameters:

1. the address of a scratch area it can use

2. a queuing word index to use, found in the pseudo-process,

3. identification of the pseudo-process

4. identification of the event channel to be used.

EVENTI = This routine places an event on the specified event channel. It

expects the following parameters:

1. event channel to be used

2. identification of process or pseudo-process sending the
event

3. event datum

4. origin of scratch area including an address relative to
this origin to which the disposition of the event is
returned.

1.2.2 Calls from the ECS System to the Interrupt System

UNHUNGI -- This routine signals the arrival of an event to a pseudo-

process. It expects the following parameters:

1. return address

2. origin of scratch area

3. the absolute address in ECS of the pseudo-process

4, the event received.

w

UNHUNGI looks` into the pseudo-process for data: first it uses

the address specified in word 4 of the pseudo-process to chain

it on an interrupt queue designed for each particular device.

The interrupt queue is maintained by two words in a file in

ECS. :See Figure 1.) The first word points to the absolute

address of the first p seudo "pro ces s in the queue, and the

TS Interrupt System -5

w

second word points to the last one in the queue. Pseudo-

processes are chained on the queuing word (word 2) in the

pseudo-process.

Next UNHUNGI takes the Interrupt Index (also found in word

4 of the pseudo-process), which points to a particular

device, and stores it in I . STAKE when I. WAKE has gone zero.

The Interrupt System calls this routine when it has tried

to hang a pseudo-process on an event channel (using HAND)

and gets an event back immediately.

Figure 2

1st Part of Pseudo-Process

6

7 7

-to

0 0

~6

7 '7 7 7 MOT index of
the Pseudo-

- process

0 0 0 0 0 0

Queuing word (Pointer to next pseudo-process - used by event channels

and interrupt queues)

Zero word (stops chaining words - used by event channels)

0
'v

U
Interrupt queue

address
Interrupt

Index

Event word 1 (placed here by UNHUNG1)
a _ -

Event word 2 (placed here by UNHUNGI)

1.2.3. Interlock Facility

The Interlock Facility is used to prevent interrupt code from referencing

event channels while ECS is doing so. The cell I.LOCK is set non-zero

by the ECS system whenever the ECS system is about to work on event channels,

and is set 'zero when the work is completed.

TS Interrupt System - 6

Currently, the interrupt system always checks the cell upon entry to any

of its code, and if it is non-zero, quits immediately. (Eventually the

interrupt system could be more discriminating and only check I.LOCK

when it was about to work on event channels. This could be used by

interrupt routines desiring immediate access to a file and only a file.)

II The Peripheral Processing Unit Portion

There are two areas to the PPU portion of the Interrupt System. The first,

the Master PPU, serves to synchronize the Interrupt System. The second area

consists of the indiiidual PPUs which handle the individual devices. In some

instances, several devices are handled by one PPU, and in at least one instance

(the disk) oxie device is handled by 2 PPUs.

2.1 The Master Peripheral Processing Unit (MPPU)

The master PPU handles the synchronization of the Interrupt System with a

large loop, starting at MLOOP , which performs the following actions by means

of a succession of return jumps:

1. Calls a routine which checks for the status of the user; e.g. arith
errors, or R.A+1 = 0 (indicating a simulated SCOPE call) . If either
of these two conditions holds, the PPU calls the ECS system via a
monitor exchange jump (XJ).

2. Checks I.WAKE to see if there are any calls on the interrupt sys-
tem from the ECS system.

3. Checks a channel, INTCHAN (as spelled in listing for MPPU), for calls

on the Interrupt System from the other PPUs.

4. Calls a routine to update the master clock in Central (S.MASTR) which

is run in steps of one millisecond and contains the true time in'
milliseconds since the system was started. This routine must be

entered at least once every 4 milliseconds.

5. Calls a routine 'tO update the clock S.QUANT which signals the. end
of a quantum for a user program by going positive (over-f lowing) .
In this case, a monitor exchange jump is signalled to Central.

6. Calls a routine to update a charge clock, S.CHARG, which is updated
whenever user code or interrupt code, but not system code, is running
in Central.

TS Interrupt System -

7. Calls the routine DOINT to check a table for pending interrupts.

(MPPU maintains in the table a list of those interrupt routines which

have been signaled via either the ECS system or INTCHAN and have not

yet been called.) If they are sending interrupts, it scans the table

for the first one pending and having found it, find the P-counter in

a table in Central, copies it into an exchange jump package located

in Central (at I.BOX in the routine CENLINT), and then performs

an exchange jump to that package. Since the table is ordered by in-

terrupt number, those with low interrupt numbers are called first.

8. Enters a short loop of 12-24 milliseconds and checks the P-counter.

If it is zero, MPPU assumes that the Interrupt was unsuccessful due

to I.LOCK being non-zero when checked by the Interrupt Routine.

It then goes away, and will make this interrupt call later. If the

P--counter is non-zero, it assumes that the interrupt routine is run-

ning. It then continues cycling through this short loop, watching for

the P--counter to go to zero, checking now and then for new interrupt

requests coming in on INTCHAN or in I.WAKE, and recording them.

It also maintains the master clock (but no other clocks). When the

P-counter coes to zero, it restarts Central with an Exchange jump, and

updates the master clock (S .MASTR) and charge clock (S . CHARG) to com-

pensate for sloppiness at the beginning and end of the routine.

2.2 The PPU Interrupt Routines

The basic operation of an ordinary interrupt routine involves the following

actions:

If working with event channels (or if the coder was lazy) , an Inter-

rupt Routine first checks I . LOCK. If I . LOCK is non-zero, the

routine must promptly jump to location zero within a few milliseconds

(like 4 or 5) . If I.. LOCK is zero, the routine proceeds to do what-

ever it was planning to do. When finished, it jumps to zero, signalling

the end of the interrupt.

An interrupt routine gets a pseudo-process off of the appropriate inter-

rupt queue by calling DINTQ, with the absolute address in ECS of the queue.

DINTQ either returns with an indication that there were no pseudo-processes on

the ~ueue or it unchains the first pseudo-process and returns its absolute queue,

address. (The event can be found in the pseudo-process.)

2.3 General overview of Howl a User Event is Transmitted into Action by an

Interrupt Routine

1. The user sends the event to the event channel.

2. If the event channel routines detect the fact that there is a pseudo--

process hung on that event channel,

3. they unchain that pseudo-process from the event channel and transfer

control to UNHUNGI.

TS Interrupt System -8

4. UNHUNGI looks into the pseudo-process (word 4) and finds that the
interrupt index is - which it stores into I.WAKE.

5. UNHUNGI finds (word 4) what the absolute address in ECS of the inter-
rupt queue is and chains the pseudo--process into that queue as
described.

6. UNHUNGI also places the events in event word 1 and Z in the pseudo--
process.

7. The master PPU then discovers I.WAKE 0, records this fact in its
own tables and sets I.WAKE .back to zero.

8. When a suitable time occurs (hopefully before too long), it does an
XJ to the appropriate interrupt routine as determined by its own
tables.

1. The interrupt routine then does. various, things, including calling the
general routine, DINTQ , which takes the pseudo-process off the inter-
rupt queue and passes it back to the interrupt routine.

10. Finally, if when the event was received by the event channel, there
were no pseudo-processes hanging, the event is stored on the event
channel queue, and later, when the interrupt routine desires to hang
a pseudo-process on an event channel, the event channel routines
return with the event, and UNHUNGI is called by the code associated
with the Interrupt routines themselves.

