.2 .April '70.

INTERRUPTS

A) GHNERal considerations, or, the conflict.. ‘ A

1) Three categories of interrupts are envisioned. Ip order
of decreasing urgency, they are:

2) The syatem wants to do something to the. process because

1) he's used all his money
11) preople have to be swapped ocut to unjam ECS.

- These interrupts must be honored in a hurry.,. .

b) The user smmds an interrupt from his TTY. (Two leweb
‘of urgency currently exist, CSP and BREAK.) The faster
these interrupts take effect, the better the. system .
looks,

¢) The user has given a friend az capability to interrupt
him, but only wants it to strike under certalin . .
conditions, It doesn t matter if this type of interrupt
‘never strikes,-

2) There exlist manipulations whic¢ch cannot be terminated grace-.
fully in mid-stream, Here the difference between interrupted
and terminated makexxitxa¥f should be mentioned, 'Most things
can be interrupted, provided that they are later allowed to. .
finish without having been disturbed in any way in the interim.
-Examples of things which shouldn't be terminated at arbitrary
times are . .

a; the DISK SYSTEM, when 1it's twiddling pointers
b) the DISK SYSTEM, when it's in an ungalinly posture with’
respect th having something half-way swapped in or out.
¢) the LINE COLLECTOR, when it's twiddling pointers

d) a DATA BASE UPDATER; when it's updating -

‘The last one poses serious problems, because 1t 1is s
manipulation which must be invokable by the user,

3) The orderly termination recuirement conflicts wth the semi=
instantaneous response recquirement, Any solution involves
‘a compromise in that some small time interval must eventually
‘be allowed for graceful completion of manipulations requiring -
graceful completion, Two radically different styles of
solution have been discussed:

&) Some -sort of GLOBAL - INTERRUPT INHIBIT BIT, or GIIB,
which can be set locally to guarantee completion of
‘eritical operations, A bug which leaves this bit
set Indefinitely is intolerable, so that some mechanism
of limiting the length of time that it 1s set must = .
‘exist ir the system, An implementation of this method
is. discussed. in C below, - Note that this scheme implies
that allinterrupts are subject tc some minimum delay
whenever any critical manipulation 1is in progress,

b) Making use of the current interrupt meachinery, interrupts -
which must be honored fast are directed to an appropriately.
peestigious node of the suoprocess tree \suon aB ohe 1'uLuL),
1446 suveltUPH OCiurs lmmediately and then the SP fielding
the Interrupt has to decide wh&t the hell to do with it,
The bookeeping and implementation seem to be a nightmare,
but thls method 1is mentioned becsuse it makes it)
possible to decide to Interrupt something and then
let 1t terminate later, giving potentially greater
fesxibllity and faster response than method a, -A- :
ghost of a suggestion as to implementation 1s gilven in D.h

B) Current interrupt structure,
1) Subprocesses are arranged in a tres, Nodes above a given

3)

4)

nede are called 1lts ancestors, A nude i8S an ancesoolr @L .
FRVISICE S 4 LOGEITUDLES Are uargLusu 0 8 DAl LiCwldl’ BUvDavvcon,

'palleo uii@ anoerruft suuvprocess, An interrupt subprocess
Coesn't actually start execution until 1t pecomes. an ancestor.

of the subprocess currently executing, called the current

“subprocess, = See fig Te

»curfent subprocess

fig 1 = subprocess tree,' interrupts directed
to subprocess in, the shaded area strike
right away, modulo the IIB explained
in 2; other: interrupts wait,

Local interrupt inhibit bit (IIB). wheh an interrupt

-subprocess is fired up, an ‘IIB is =z=t automatically set
which prevents the subprocess from recleving any further

interrupts, The IIB goes away if the subprocess returns

‘and doesn't have any effect if the qubprocess has'called -

another subprocess which 1s executing, ,The IIB may be set = .
and reset by expllcit system callsbfrom within x he subprocess
iteelf, - * L
Interrupts arriving for ;mxin#xnxnxxxxmkpnxxganx & pending .
interrupt suborocess are lost and have no effect;! the first

‘interrupt to arrive for a subprocess with ‘the IIB set 1s:

remembered subseguent ones are losgt,
Howard 1ustly observes that the tree structure for qubprocesses

‘serves a second fuhetion, namely, it determines how many -

nodes coexlist in xitmrage CM, An undesireahle effect of this
secodd use of the tree 1s that a subprocess which is logically
an sncestor of some- other sp may be put- "off to the side",

so as not to cramp it's (logical) dcscendente core, To

‘salvage the interrupt logic, the ancestor must be split
‘into a small pilece, to intercept interrupts, snd-& main

plece off to the side which is called by the small pilece,

"This resultq in a eroliferation of oubprocesses.

C) Butler Lampson's (BCC's?) global interrupt inhibit with timer
solutiocn,

1)

3)

4)

Basically,‘there is & GIIB which may be set and cleared by
stem calls, Assoclated with the GIIB is a real-~time

tmcr which is set to LIM whenever the GIIB is set, If
the timer runs out while the GIIB is still -set, .error
processing 1s initiated,
BCC allows a subproccess to set the GIIB even whén 1t has
already been set by a calling spes B0y

a) the actual time that interrupts are locked out may by

LIM#(depth of call stack), roughly,’
b) the GIIB has -to be manipulated in the .call .stack, or.
some other stack,

The scheme makes it necdesesary for the systém periodically’
to ‘touch every. process in the system.(or every .process on .
g list of processes with the GIIB set) to update the timer,
When tkmaprmzesxxisxfiredxmdtimer runs out, the offending’
process must be fired up and error processing initiated,
God knows what becomes of paEmdimg any interrupts pending
on the process, Also, error processing has to be revamped
to ‘prevent undesireables from intercepting: the error,
A blg objectlon to the implementaticn of this scheme 1s
the stack of timers - is it really neceSGary? '

D)

.

The magic, all-knowing subprocess solution, I can't get excited
about really implementing this scheme, but 2 rough idea follows,
It is a theoretically interesting solution, asit allows :
the nosgsibility of "susrending" critical manipulations for

later completion and avoids locking things up absolutely

-every time a manipulation deemed critical is. being performed,.

(Consider the #& case where the system has decided to destroy
the process absolutely; it no longer seems too important to
allow the LINE COLLECTOR to terminate gracefully). o o
1) Interrupts are handled as at present, Important interrupts
“are directed to sufficiently preéstigious node ¢f thée tree,
2) The prestigious subprocess.(PSP) is responsible for. any .
idiosyncracies of his dependents, He decides what to do,
a) If PSP decides to process the interrupt right away,
there are no problems (unless, of courge,. he's wrong),
b) If the PSP decides something critical might have to
- 7 be wrapped up before processing the interrupt, he
sets some kind of real-time timer and does a speclal
call of the critical sp, warning it to tidy up, If
the critical sp returns in time, fine, If not, we're '
. in the same bag as when C's timer runs out, . EE

Conclusions, As of this writing, we are short on canclusions,
Lveryone secms resigned to implementing some sort of GIIB with
some - sort of timer, but various people are =till trying tc -
conJure solutions simpler than C. S . .

Also under discussion is the poswible organization of the

subprocess tree for the "typical user", vis-a-vis handling .
of various categories of interrupts, Nothing worth writing
down has emerged from these discussions as yet, (People are
still proposing radical alterations of the current interrupt

‘structure, Boo-hiss,)

