
.. ·-- --··-·" -, , }!!ii!P<-, -- .__.,,. ______ .__

ADDITION TO DIRTY BIT SPECS

Howard points out that it should be mentioned that move block
carries the dirty bit along with the block.

KARL'S OBJECTION

·,nth respect to the blurb on allocation last time, Karl says that
the objects in ECS are set up so that one object can be moved ~•i
without necesEitating the relocation and/or maspaging of some large
fraction of ECS and that's all there is to incremental compacting;
he was annoyed that I said incremental compacting was left as an
exercise, since it is obvious, trivial, etc., how to do it.

Karl is right about this. ·mat I was objecting to was a lack of
any sort of general description of the problems that were supposed
to be handled by incremental compacting, lile speed freaks, interrupt
code, compacting during the idle loop, etc. This lack is no doubt
not ascribable to Karl as it seems to be a more or less general
Quaiity of the documentation. I'm putting together a little blurb
on the compactor which may be out next week.

Meanwhile, if Karl isn't mollified by this, he can submit his own
disclaimer for next week. OK?

ALLOCATION DECISIONS

Last week, we decided to do whatever was necessary to
1) fix the existing bugs
2) free one end of ECS
3) provide an incremental «11m:,ax1ttmtixi:tkx compactor which will:

a) massage some number of real cells or collect some
number of free cells or both (see compacting document)

b) do the normal I.WAIT/I.LOCK logic to allow interrupts
c) monitor a new cell (I.COOL?) which will cause the

compactor to s'uspend compacting when the cell gets
set and take a special exit (for to run speed freaks).

It was decided not to do the engineering necessary to m1ke it
possible to create arbitrary size objects (unless it somehow falls
out).

BENT FILES

All talk about speedfreaks, incremental compacting, etc., is vacuous
unle2s we get to the bottom of the bent file problem. I would like
to hear exactly what the problem is and a decision as to what's to
be done about it.

CPU TIME ACCOUNTING

I would like to have Jim Grey order Howard and I to figur out how
CPU accounting is going to be done. Discussion of the properties
and problems of CPU accounting is in or~er.

GLOBAL INTER<UPT INHIBIT

Solid proposals and decisions for implementing the GIIB are in
order. Also, the configuration of the user's procesr tree vis-a
vis interrupt handling could use some clarification.

~ - ------------- - w ~

2-() ~'?o

z

DIR~CT AC:ESS REVISITED

At the 17 April disk ~ystem meeting, the old headache of DAE'~
wns discussed again. It was realized that we were into giant
headaches and golng around in various size circles, so we backed
off and started all over again. Wna t, t.he ne.Ll ar·e ua.!!.o ! tJ 6 uoa • o.c
anyway? The only use that the ~articipants could sugsest and
defend was to give the user access to a large,fast address space.
(Proponents of other uses, please step forward at once.)

On the basis of the "large block" theory, the following decisions
were tentatively made:

1) At the ECS level, blocks have to be created nudged, as
opposed to created first and then nudged later. This
avoids fairly unpleasant problems encountered when trying
to find space to relocate a large BK block.

2) At the disk level, big 0-level files and only big 0-level
files are always created nudged. This is f~irly restrictive,
but it is adequate to the only use so far proposed for DAE's.
(A side kludge is that big directories will be implemented
as multi-level files unless we want them nudged, but that
seems OK.) "Big" remains to be defined exactly.

REALLOCATION

Currently, when an object is being realloc~ted if it can't be
expanded in ,1ace, it is briefly charged to itls father allocation
block twice (while another place for it is being found and it is
being relocated). This has at least two bad consequences:

1) It ~akes it slightly difficult for you to control accurately
the space used by some untrustworthy subprocess.

2) For every user in the system, the disk system has to either
give him space for 2 process descriptors or be very tricky
about allocation/changes to the process descriptor.

The reason behind the double axxm charge is to ~void locking up
ECS I ca.use of space problems. f:t Mechanisms for avoiding the
double charge and not causing a disaster are under consideration.
There seem to be only 2l m kinds of mm:.'lf!llB::tK things which get
reallocated

1i Process descriptors
2 i_ Operations
22) Maybe nudged blocks, pendin3 the outcome of the DAE debate.

Since 1 & 2 are small, they could usually be handled by "hidihg"
some number of cells of ECS and counting on these for the relocation
of small objects; larger objects could be doubly charged as at
present, or handled out of some kind of system space pool (with the
possibility of failure, since there may not be enough system space).

Anyone have a nice solid idea?

