
& ~"~ l-i. I .s ~ .. A-_!_
()j November 24, 1970

....,,. l, .i >--v '-t. 2.. . n.. I
erJ-!.""':i. 7 ft ,-,,,1ut .,.If w•I"\ ,,
.. II I, eh,,.,, "" "' I., ,r,.,v19 t

Actions In the Event of A Panic __ !1 ~~;.;,:...::,...;.-----~ •

I Panics cause an interrupt to be directed at the bead ghost in the users

process. There are 2 kinds of panic, major and minor. A major panic is

generated by holding down the break button. It requires about 2 seconds.

This 2 seconds is cumulative, that is, it can be obtained from several

periods of at least 1/10 second each. A minor panic is currently generated

by control shift P. Eventually, the particular character causing minor

panic will be placed under program control.

II After a panic has been detected by the bead ghost, the following algorithm

-is followed:

A. If the subprocess immediately below the bead ghost in the stack (form­

er running subprocess) is not a system subprocess, then the action

depends on whether major or minor panic.

1, Maj or panic

A debugger is called. (Currently this is the bead itself, and

will type out "panic bead" here.)

2. Minor panic

An error return to the user subprocess is made with error class

= e. panic= 12
10

error number= 0

(if this error is detected by the bead ghost, a debugger is called

as in 1 - see above.)

B. If the subprocess immediately below the bead ghost in the stack is a

system subprocess, then the bead ghost returns to it with error.

error class= e. panic

error number= 0 if minor panic, 1 if major panic

The system subprocess then cleans itself. Then a choice is made

depending on whether the system subprocess is a controlling subprocess

or not, (see below for definition) and whether this was a major or

minor panic.

1. If it is not a controlling subprocess, and this was a minor panic,

then return with error is made.

2.

error class= e. panic

error number= 0 7'1;
1

If it is not a controlling subprocess, and'',f°was a major panic,

then the bead ghost is jump called and the bead ghost proceeds as

in II - A.

PAGE 2

3. If it is a controlling subprocess, it requests a new command from

the user.

III The effect of the above algorithm is to clean up and remove from the cal]

stack all non-controlling system subprocesses until either a controlling

system subprocess or a user subprocess is reached. If a controlling system

subprocess is reached, it regains control, usually by requesting a command

from the user. If a user subprocess is reached then what happens depends

on whether this was major or minor panic. If major, a debugger is called

immediately; if minor, an error is generated for the user.

IV The controlling subprocesses include:

A. The command processor

B. The debugger

C. (Possibly) disk, S

(Note: Disk, Swill initially be a user subprocess. Don't panic out

of disk!! But, if time permits, I will fix it to respond

properly to interrupts.)

V What is described above will not work completely until bead vers. 4.2

(I hope)

Under bead vers. 4.1 funny things happen if the bead was running at the

time of the interrupt. I will not attempt to catalog them here, but

will give one example. If the bead was waiting for a command from the

user, and you interrupt then it types out "panic bead here." If you

subsequently restore then it makes no response, but it in fact goes

back to waiting for a command from the user.

