
Summary documents for using the demonstration version

of

CAL TSS

1. Idiot's Guide

2. The Editor

3. BASIC

Idiot's Gui<le for l~1_E_ni.ng on the Demonstration Version of CAL TSS

I) Words of warning:
1. This is a demonstration system; there are known (and unknown) ways

to crash it.
2. There is no way to preserve files on this system once the user has

logged out or in the event of a system crash.

II) Time-sharing in four easy steps:
1. The teletype must be turned on and switched to the connection for the

B machine; ask somebody if in doubt.
2. Attract the attention of the system by typing CTRL-SHIFT-P (hold down

the buttons marked "ctrl" and "shift" and hii! the letter "p").
If the response is:

CAL TSS VERSION 1.0
NAME YOUR PERMANENT DIRECTORY

proceed; if the response is anything else, find expert advice.
3. General information on dealing with the keyboard:

a. All input goes to a piece of software called the line collector, which
allows certain manipulations~~1:..1!~~1:'f:;:~ few commonly useful
features are listed below. (~oM~escription jg a:rdla■ h).

b. Input lines are terminated by the "return" key (no line feed).
c. Typing CTRL-Q erases the previous character entered.
d. Typing CTRL-Y erases all characters in the current line.
e. Typing CTRL-I skips to the next tab boundary (cols. 11, 21, •.•).

4. A typical run:
Back in step 2 the system asked you to name your permanent directory;
this means that it is ready for you to log on.
a. Logging on checks you into the system:

Type: GUEST
Response: GIVE PASS WORD

Type: GUEST (on the same line following the period)
Response: ENTER TENTATIVE NAME FOR TEMPORARY DIRECTORY

Type: any 7 or fewer alphanumeric characters which,you feel will
uniquely identify you (again immediately following the period).

Response: COMMAND PROCESSOR HERE

! ~
If some other response~ such as: ERROR OCCURRED ON CALL TO CHMDS
followed by several lines of junk, eppcu~ try another name; the
one you chose was already taken.

b.Doing your thing: You may now use BASIC, or any other subsystem which
happens to be active. A sheet is available which describes BASIC, an in
teractive language. Use of other currently available subsystems generally·
involves the following steps:

i. make or update a text file with the Editor (a sheet describing the
Editor is available).

ii. call the subsystem which is supposed to operate on the text file,
for example, the SCOPE Simulator.

iii. if errors, scan the result file with the Editor to locate the errors,
and then go back to step i.

iv. if no errors, print the result file with the Editor.
v. repeat as patience and curiosity allow.

c.When finished, type: LOGOUT

3/71

Summary of the Edi_toiz.

The Editor subsystem enables the TSS user to construct and edit files of coded information.
A file consists o(lines of coded characters ending with a carraige return character (gen
erated by the RETURN key on the teletype).

The Editor is called by typing a command of the form:

EDITOR fname

where fname is the name of the file to be created and/or edited. The Editor will respond
by typing EDIT and awaiting a request. At any given time the Editor is looking at a specific
line called the current line. When the Editor is first called, the current line is a pseudo
line which is always the top line of every Editor file.

The following requests may be typed to moVf' about the file for the purpose of creating,
deleting, or editing text lines. Each request is terminated either by a carriage return or,
if more than one request is made on one line, by a semi-colon. Some requests contain a "stop
condition" or line specifier, represented by sc below. Such requests affect all lines from
the current line to the line specified by sc, inclusive. (If you've lost track of the cur•
rent line, request "P" and the Editor will print it.) sc may be :

1) a decimal number, specifying the line that number of lines from the current line
2) ".~" (where str is any string of characters except semi-colon), specifying the

next line containing that string of characters
3) "/str", specifying the next line starting with the given string of characters,

ignoring leading blanks
4) 11$11 , specifying the bottom, or end, of the file
5) omitted, specifying the current line.

After the Editor has processed the request, the line specified by the request becomes the
new current line.

Requests

I

Dsc
T
Msc
Bsc

Psc
C/strl/str2/sc

CG/ strl/ s tr 2/ 2!:;_
Esc
R-;I name, uname

W,fname,uname,2!:;_

F,fname,uname

Q

Meaning

Insert, after the current line, the lines which follow.
Insertion is ended by, entering a null line.

Delete the specified lines.
Move to the top of the file (pseudo-line).
Move forward over the specified lines.
Move backward the specified number of lines. (NOTE: sc can

only be a number.)
Print the specified lines.
Replace the first occurrence of strl by str2 in the specified

lines.
Replace every occurrence of strl by str2 in the specified lines.
Edit the specified lines using the line collector.*
Insert the contents of the file fname,uname after the current

line.
Locate (or update if necessary) the file fname,uname and write

into it the specified lines, including the current line.
Finished - create the file £name from the latest version; simply

entering "F" causes the updated text to replace·the original
file specified when the Editor was called.

Finished but do not save any file.

The Editor does not "prompt", When it gets an incomprehensible command, it answers "????".

Each line being edited is
using the line collector.

made the old line in the line collection and may then be

(Se~ :;.:,~;a :1;:L, NE C.QL'-GC?Qf.)

altered

Summary of BASIC

BASIC is an easy-to-learn, general-purpose programming
language similar to FORTRAi~ but created specifically for
time-shared computing environments. For details see the
description in the CAL Computer Center Users Guide.

BASIC accepts three types of statements: 1) indirect,
which are saved to be executed sequentially as _a. ..P.ro-·,.
gram at some other time; 2) direct, which are carried out
(executed) as soon as they have been entered using the car
riage return key (direct statements, especially the PRINT
statement, allow the teletype to be used as a very power-
ful desk calculator); and 3) Editor requests, which instruct
the computer where and how to save the indirect statements
as well as how to change (edit) them if necessary (see
Editor document).

Although some statements may be used only directly (or in
directly), most statements may be used either way. All in~
direct statements must begin witn a line number and are exe
cuted in order of ascending line numbers.

BASIC is called oy typing a command of the _form:

BASIC

It responds with BASIC HERE after which either direct state
ments or a program of indirect statements may be entered.

There are two ways to enter a program of indirect statements:

BASIC does not ;l,mpt and types???? in response to lines
it does not understand.

Sample BASIC program starting from the Command Processo;:

BASIC
BASIC HERE
I
100
105
110
120
130
140
150

PRINT "NUMBER",
PRINT

"SQUARED", "CUBED"

FOR X=l TO 10
LET S=X*X
PRINT X,S ,X*S

NEXT X
END

empty line
RUN

NUMBER

1
2
3
4
5
6
7
8
9
10

SQUARED

1
4
9
16
25
36
49
64
81
100

CU.SEO

1
8
27
64
125
216
343
512
729
1000

1. Creating a new program file l. Edit his program usi~g Editor requests and rerun it.
Now the user may: •

2.

a. type I 2. Quit (and return to t::~ Command Processor) by typing Q.
b. type the statements (if BASIC responds with 3. Quit and save the prc;-im on file fname (and return to

ERROR ••• the line was not entered into the file the Command Processor _ by typing F,fname; the program
and may be retyped). . J will be available for ::urther manipulation.

c. enter a null line (£/(only) to end the file ~ Indirect or Direct S'rn
Reading an already existing program file~~ LET~=[... var=Jexpr Each variable 1 takes on the value of
a. ,fname the expression. , 35 F
b. • ntainin errors wi 1 Example: 10 LET A=b=➔• -

' .
c. DIM array(dim list)[... ,array(dim list)] Reserve space for

--arrays with more than two dimensions and/
or dimensions> 10.
Example: 20 DIM A(60) , L(S ,N, 3*N}

1 A variable may only be a letter optionally followed by
a digit, or by a list of expressions sepaiated by
co~as and enclosed in parentheses.

r
SIG expr Number of significant digits printed for numbers

is changed to the value of expr. Ex. 30 SIGN

DEF FN letter(param)=expr Defines a one line function whose
name has three letters starting with FN and whose
single dummy parameter is param. Example:
35 DEF FNG(X3) =X3/ 10 - A0/X3

READ yar{ ... ,var] Reads from a DATA defined list and
- assigns values to the variables in a sequential

order. Example: 40 READ A,B,G2

INPUT Yi!,![... ,~] Requests input values from the TTY by
typing ? and assigns values to the
variables in sequential order.
Example: 12 INPUT A,B,C

PRINT [... ~] Prints and/or moves the teletype head as
indicated by the item(s) which may be~ expr,
string var, "characters", TAB(expr), , , ; , and
Example: 100 PRINT "VALUE +", TAl~ (B l*Bl)

RESTORE Restores the ?@inter into the DATA bank to the top.

IF log expr GOTO lnum
IF .!Q.g_ expr THEN lnum

Transfers control the statement with
line number lnum if the logical expres
sion is true.
Ex. 105 IF A B/SIN(X) GOTO 115

GOTO lnum Transfers control to line number lnum. Example:
20 GOTO 300

ON expr GOTO lnum[... ,lnum] If expr has value=l, GOTO state
ment having first lnum in list; if expr has value=2,
GOTO statement having second lnum in list, etc. Ex.
10 LET X=l
20 ON X GOTO 30,40,50 transfers to statement 30.

REM~ string A comment statement.

MAT c = (expr)*b Array c is set to the scalar product of
expr and b.

MAT c = INV(a) Matrix c becomes the inverse of a.

Indirect Statements

DATA valf ... ,val] Forms a list of data values to be used by
READ statements. Ex. 12 DATA 5,7.3,3E + 52

Execution pauses and str,if given, is printed.
BASIC will accept direct statements or editing
requests; execution resumes if COXTIXCE is
entered.

END Ends execution; must have highest line number.

STOP Stops execution (acts like a jump to EXD statesent).

FOR val=expr TO expr[STEP expr] Defines the limits of a loo?.
NEXT~ The three expressions give the in

itial value of the control variable,
the terminating value and the incre
ments, if not equal to 1.

Example: 40 FOR I=l TO 10 STEP .5
50 LET S=S+I
60 NEXT 1

RETUim Execution goes to the line following the last GOSL'B
for which no RETU&~ has been executed.

Direct Statements

LIMIT integer Specifies a maximum number of statements that
can be executed without control returning to
the console; prevents infinite loops.

RUN Causes execution of the program beginning with lowest
line number.

GOSUB lnum Go to the statement specified by the line number
but return to the line following the GOSUB when a CONTINUE Execution continues where it last stopped.
RETURN statement is encountered.

MAT READ c Reads values from DATA list into array c.
MAT PRINT c Prints values from array c.
MAT c ,.. TRN-(a) Matrix c becomes transpose of a.
MAT c • ZER Zeros every element in matrix c.
MAT c • ION Square matrix c is set to identity matrix.
MAT c • CON Array c is set to all ones.
MAT c = a+b Array c is set to the sum of a and b.
MAT c = a-b Array c is set to the difference between a and b.

Summary of BASIC (cont.)

Operators

Arithmetic

t Exponentiation
* Multiplication
/ Division
+ Addition
- Subtraction

Relational

• Equal
< > 1 ><, # Not equal
< Less than
<•, •< Less than or equal
> Greater than
>•, •> Greater than or equal

3/71

Functions

ABS(X)
ACS(X)
ASN(X)
ATN(X)
COS(X)
EXP(X)
INT(X)
LOG(X)

1

Logical

Logical OR
£ Logical AND
NOT Logical NOT

!xi LGT(X)
arcos (x) RND(X)
arcsin(x) SGN(X)
arctan(x) SIN(X)
cos (x) SQR(X)
eX TAN(X)
integer TIM(X)
loge x

Summary of BASIC (Cont.)

log x
rand8m num
sign (x)
sin(x)
Ix
tan(x)
seconds used

3/71

3/71

APPENDIX A - How to return to the COMMA.ND PROCESSOR

In order to call subsystems, the user must be in the COMMAND PROCESSOR, which is the "ground state" of the process
watching his teletype. If he forgets what he is doing, or inherits a teletype in some unknown state, the table below
explains how to tell what subsystem is in control and how to get back to the CO~l}fAND PROCESSOR. Procedure:

1. If there is a prompt character printed by the teletype, check which subsystem uses that character.
2. If not, enter a null line and observe the response:

a. If there is a response, the user should be able to identify the subsystem from th~ :able.
b. If there is no response, he should not try to use that teletype without getting e: ::-t advice; it may be blown

up or it may be involved in a remote function such as printing.

3. Having identified the active subsystem, the user may dismiss it or proceed.

- - --

I RESPONSES TO INC0:::.1PREHENS IBLE INPUT HOW TO DIS: ...
IT - ::,

SUBSYSTEH PROt-1PT OR ERRONEOUS INPUT (Commands c underlined belo,,,)

COM!-fAND t BAD SYNTAX when finishe:, LOGOCT
PROCESSOR : or '

UNEXPECTED F-RETURi."I DURING COMMAND ...
+ possible other lines

or
UNEXPECTED ERROR IN CQl-l}fAND PROCESS ... You may call any available subsystem;
+ possible other lines

or
ERROR OCCURRED ON CA.LL TO COMMDS
+ other lines

SERVICES * same as COMMAND PROCESSOR, except the message FIN --
says SERVICES

BEAD GHOST @ same as COM!-fAND PROCESSOR, except the message to return to COHHAXD PROCESSOR,
(debugger) says BEAD GHOST PlTRGE

to return to subsystem which made
error originally,
RETIJRN or
RETRY

EDITOR ~ • ???? F or
• 9. (see EDITOR document)

BASIC ~ - ???? same as EDITOR

• • or miscellaneous diagnostics relevant to
erroneous BASIC statements

SCOPE > ??NO?? FIN
t , ___

C!rf'\Dt:'\

3/71

J\l'l'ENDIX B - THE LINE COLLECTOR

Unless the user docs sonwthing extraordinary, all input to a TTY goes through a
piece of softw,-u-e called the LINE COLLECTOR. The LINE COLLECTOR provides a large
number of ways to correct/change the line being entered. The chart below indi
cates the various manipulations tl1at can be performed; to invoke a given function,
hold down the CTRL key and hit the relevant key. A detailed explanation is avail
able in the "Users Guide", sec. III.2.3. Here we give two examples and encourage
the user to experiment. Underlined characters represent one key or a combination
of keys, not the sequence of keys given by the individual underlined characters;
blanks that might otherwise be "invisible" are also underlined.

First note that the LINE COLLECTOR maintains the previously typed line as the
"old line" and uses it, in conjunction with typed characters, to construct a
"new line". Whenever the new line is accepted (by typing CR, for example), it
becomes the old line.

You are talking to BASIC
line") below (which will

and have just entered the line (considered as the "old
have provoked a message from BASIC objecting to the line)

old line:

~

CTRL-L

10

CTRL-0

PJIJT X

meaning

make an insert at the
beginning of the "old line"

this is what is to be inserted

copy the rest of the "old line" (all of
it) into the "new line" and accept the
"new line".

and the teletype responds

no response

10

PRNIT X
and the carriage
will return.

BASIC wjll issue another diagnostic as it still will not recognize the line as
a valid(statement

old line:

~

CTRL-D

N

IM

C'!_RL-Q

N

CTRL-H

,Y

CR

10 PRNIT X

meaning

copy the "old line" into the "new l;i.ne"
up to the first occurrence of the next
character typed

you wanted IN and made a mistake

erase the M

copy the rest of the "old line" into the
"new line"

you remembered to print "Y"

you are satisfied with your "new line"

BASIC should accept this line, which is

old line: 10 PRINT X,Y

and the teletype responds

no response

10 PR

IM

+

N

TX

,Y
and the carriage
will return

..,
a.
(l.l

u
u
<:

..,
a.
(l.l
u
u
<:

l •

tin~ Collector

up to edge (left or rignt)

up to Tab

up to and including next
character entered

9p to the next character
entered

on.e word

one character

13

