The Cal Computer Center Users Guide
Volume III - The 6400 Computer System
Part Three - The Time-Sharing System

Time-Sharing System Manual
May 1971 Revision

The attached version of the TSS manual completely replaces the

existing documents (dated February 1971). Although significant
changes have not been made to all pages, the manual has been
regenerated as a whole in order to implement a new page heading
format which includes the section number along with'the section
title in the upper right corner of each page. Where the text
itself has been altered, a bar appears in the right margin. . Bars

appear on the following pages:

PART THREE ‘
Ch. 1 Introduction: 1,2,4,5,8,9,10
2.2 Editor: 1,2,3,8,11,12,13 |
2.3 Line Collector: 1,12—15_
2.4 SCOPE Simulator: 1,2,3
2.6 BASIC: (new sectiqn)
2.7 BCPL: (new sectionf
2.8 Printer Driver: 1,3
3.1 Files: (new section)
3.4 Capabilities and C-lists: (new éection):‘
3.6 Event Channels: 2 ’ RRNARIS
4.1 File Actions: (new section)
4.4 C-list Actiéns: (new section)
4.6 Event Channel Actions: (new section) .
Appendix A: v(new) E '
Appendix B: (new)

PART FOUR
E. BASIC: 2-10,14,15,18,19,21
F. BCPL: (new section)‘

The CAL Time-Sharing Systen

Introduction

Foreword

This portion of the CAL Computer Center Users Guide is devoted to
the Time-Sharing Systea. The Table of Contents which follows
represents a tentative plan for the organmization of material on
the system and may be altered and/or expanded as the development
of the system and the documentaticn progresses. Descriptions of
programming lanqguages and their processors are presented in PART
FOUR of the Users Guide; therefore, information on how to use a
particular 1language under TSS will be found in that part of the
Guide.

Sections will be made available as they are completed; a date in
-the left-hand column of the Table of Contents indicates the
existence of a section ard when the latest version was released.
Suggestions for improving the accuracy, clarity, and/or conmplete-
ness of the documents are welcosed and should be reported to
Marianne Bentley (2-1491). A suitable reward 1is offered for valid
suggestions.

Update packages will be issued when a reasonable number of changes
have been nmade. They will include a new Table of Contents with
the date of issue at the top of the page and the new pages with
bars in the 1left-hand margin ¢to indicate where changes have

occurred.

May 1971

5/71

5/71
5/71
5/71
5/71
5/71
5/71
5/71

5/71

5/
5/711

5/71
5/71
5/71

5/71

5/71

5/71
5/71

The CAL Time-Sharing Systen

Table of Contents

PART THREE - CAL TSS, The CAL Time-Sharing Systen

Chapter 1
1.1
1.2

Chapter 2

NNV NNNNNNOND
.
WO NNE WN wa

Chapte

S s 4 8 & s
DA E WA W

Ww wbwwwwwn

Chapter 4
“.1
4.4
4.6

~ What CAL TSS is and how it runs
Introduction to CAL 1TSS
Sample session at the console

- User Subsysten
Conmand Processor
The Editor

Line Collector
SCOPE Simulator
Debugger

BASIC

BCPL

The Printer Driver
The Display Driver

- System Architecture

Files

Directories

Processes; Subprocesses

Capabilities and C-lists
Operations/Calling the systenm

Event channels

System resources ccantrol and accounting
Disk processes

-~ Systen Actions

File Actions

C-1list Actions

Event Channel Actions

Chapter 5 - I/0 Interfaces
Appendix A - Character sets

Table 1. ASCII -.Printer Character Mapping

Table 2. Non-graphic TITY Character Representation
Appendix B - Error Classes and Numbers

PART FOUR

A.
B.
C.
D.
E.

F.

- Programming Languages and Processors

ALGOL - An Algolrithmic Language

FORTRAN - A Scientific Language

SNGBOL4 - A String Manipulation Language

COMPASS — A Conmprehensive CDC Assembly Language

BASIC - Beginner's All Purpose Symbolic Instruction
Code

BCPL - Basic Christopher's Programming Language

The CAL Time-Sharing System

May 1971 Introduction

Use_of this manual

CAL TSS is a time—sharing operating system available to users of the
Computer Center. Chapter 1 contains folksy bits of information to help
the novice get acquainted with CAL TSS and get a feeling for its
capabilities and usefulness. Chapter 2 tells hovw to talk to the systen
via the ccmmand processor and various subsystems currently available;
parts of it will be essential tc every user. Chapter 3 contains
sufficiently detailed informaticn about system concepts and structure
to be of interest to a system prograammer and can probably be skipped by
the casual user without dire consequences. Chapter 4 gives the details
of system-implemented actions which a user may invoke in code he
writes, These actions may be considered as extensions to the 6400
hardware and are of interest mainly to subsystem-implementors and
machine—-language programmers. Chapter 5 gives details on the I/0
interfaces which would allow a wuser to establish his own printer
driver, for example.

The CAL Time-Sharing Systen

May 1971 [ntroduction

CHAPTER _1_- WHAT CAL TSS_IS_AND HOW IT_RUNS

1.1 _INTRODUCTION TO_CAL TIME-SHARING SYSTEM

CAL TSS is a large-scale, general-purpose time-sharing system written
by the Computer Center staff to run on a CDC 6000 series machine with
ECS. The broad design goals of the system are:

1. to support up to 256 simultaneous interactive users at
teletype-compatible terminals with fast response times for
simple interactions, low system overhead, and good access to
various hardware facilities;

2. to provide a file system allowing many files to reside
permanently in the machine and to provide a very general,
powerful framework within which such files can be accessed,
shared, and protected;

3. to provide a system environment in which a 1large number of
user-oriented subsystems can be developed and run;

4. to make possible a guaranteed response time for some subset of
the users of the systen;

5. to utilize efficiently the hardware represented by the
Computer Center’'s 6400B systenm.

CAL TSS is called "large—scale" because it is in primary control (i.e.,
does not run under another system) of the <computer, which is a
large-scale wmachine. It is a "time-sharing" system because a large
number of users at terminals may have programs active simultaneously
and may each command responses from their programs on a time~scale of a
few seconds, Finally, it 1is <called ™"™general-purpose®" because the
terminal user is not restricted to some particular programming language
or set of programming languages; he may, in fact, program in machine
language if he so desires. In general terms, the system provides
facilities for the interactive user to

1. create files, preserve them in the system, retrieve and
destroy them;

2. manipulate text files with a text editor;

3. process files with a number of subsystems provided, including

The CAL Time-Sharing Systen

May 1971 Introduction

a. a SCOPE simulator, giving access to all the facilities of
the SCOPE system, including RUN Fortran, COMPASS, SNO-
BOL, etc,;

b. a BASIC processor;

c. BCPL (a low level systems programming language) ;

4, prepare and run his own subsystems which may interact with his
teletype and other subsystenms;

5. access the card reader, line printer, tape drives, and display
console;

6. give access privileges for his objects selectively to other
users 1if he so desires and obtain privileges of access to
objects of other users who wish to grant it,.

When the terminal load on CAL 1TSS is low, another system facility will
process a subset of the batch jobs normally processed by the SCOPE
system. Other facilities can be implemented as determined by the needs
of the computing commuanity, the programmer time available, and the
capacity of the hardware.

The structure of CAL TSS and the methods of using it are extensively
described in the subsequent pages of this document. Here are briefly
described concepts which all users of the system will have to deal
with, whether his aim is to run FORTRAN or to implement a lanquage
processing system of his own.

Extended
Lore : Central
Storage - Processor

Figure

Central

Memory

pe————p -

300,000

60~bit
words

32,768
words

Peripheral
Processors

" Hardware Configuration

Peripheral

Equipment

256
Telety

—>+—>1 Mylti-|=

plplexor

> Line

(@

Printer

—””,,_4

¢ Card

Reader

DISK;
8,000,000
words

Tape
Drive]

OO

——@ Clock

Console

es

N

Figure 2. Storage Pyramid

Central
Memory

Extended
Core
Storage

“Access Time Words Cost per

For 1 word Available _word

DISK

1 us 32,768 $i4 -

b us 300,000 $1

depends on 8,000,060 . sé"s‘
system load; o :

many ms.

The CAL Time-Sharing Systen

May 1971 Introduction

Figure 1 indicates the hardwvare configuration of the current 6400B
system, on which CAL TSS is run. An exact understanding of all the
boxes and their interconnections is, fortunately, unnecessary, but a
brief description of the memory hierarchy will make dealing w#with the
system more understandable. Note first that a file is the basic entity
for storing information in the system; code ready for execution on the
central processor and text ready to be fed to a language translator are
both maintained in files,

Figure 2 represents as a pyramid the different storages present in the
hardvare. As the figure indicates, storage at the bottom is slow and
cheap and big, while storage at the top is fast and expensive and
relatively small.

The disk, at the bottom of the pyramid, contains all the files which
are accessible to the system without outside intervention such as
mounting a tape or reading a card deck.

At the top, central memory contains the actively executing code of one
process.! As the central processor is switched from one process to
apother, the <code 1is swapped between CM and ECS. Thus, ECS must
contain the code files for all processes currently active on the
systean.

Part of any file which 1is being wmanipulated by one of the active
processes {(an open file) may be in ECS or on the disk at the discretion
of the process concerned. It may explicitly ask the system to maintain
parts (blocks) of the file in ECS by attaching them and may dismiss
blocks by detaching them. When a process accesses part of a file which
is currently in ECS, the information is delivered immediately. Access
to part of a file not in ECS causes the process to be blocked (stop
running) until the system is able to bring the required information in
from the disk. A process may, by attaching a block of a file in
advance of its need to use it, improve its real-time processing speed
at a cost of using more ECS.

Within this context, some of the terms with which every user will
eventually become acquainted are now defined.

User _profile: When someone makes arrangements to utilize CAL TSS, a
body of information is recorded with the Computer Center business
office which identifies him and describes his funding and access to

S " > S ———— ——— Y ———— ———————— s

! The normal user at a terminal may consider all his interactions with
the system to be carried out under the auspices of his own private

process.

The CAL Time-Sharing System

may 1971 Introduction
various system facilities. This information 1is called the user
profile.

Log__on/Log_ off: When a user attracts the attention of CAL TSS from a
terminal, if his user profile and funding are in good shape, he is
logged on. This 1is a procedure which gives him access to his own
objects and such system objects and resources as his user profile
allows, System resources, such as memory space, are reserved for his
use at this point and may be charged against his account,. When the
user logs off, the resources are released and charging ceases.

File: As already noted, files are the basic entity for storing
information in the system. Program ccde ready for execution as well as
input to and output from language processors reside in files,

Directory: Directories are special objects which control access to
other files, other directories, and other system objects. Directories
also provide the g@mechanism for associating symbolic names ("print
names") vith the cbjects controlled by the directory.

Permanent _disk_ _space: An amount of space determined by the user
profile is permanently reserved for a user's files. It is the only
system resource tied up by a user who is not currentiy logged on and is

charged for continuously. It 1is controlled by the user's permanent
directory.

Temporary disk_ space: When a user logs on, space on the disk, as
determined by his user profile, is reserved to hold the temporary files
he may need wvwhile running, such as output files and compiler scratch
files. This space is controlled by his temporary directory.

Process: A process may be thought <¢f as an organizational entity
within the system which ties together certain code from files and other
resources necessary to %“carry out a task® or "run a program". CAL ISS
creates a process for each user as he logs on the system. His process
looks 1like a 6400 central processor with somewhat less than 32K of
memory; the full range of 6400 CP instructions is available to it. In
addition, the user's process is able to manipulate files and certain
other system—defined objects in a general way. It is delivered already
equipped vwith some code which can, for example, communicate with the
user at his teletype. The private rrocess created for the user 1is
given access to his permanent directory (among others), thus giving him
access to his files without giving access to other users.

Fixed ECS_space: Various data relevant to the state of a process are
kept 1in ECS by the system, as are certain other objects germane to its
functioning. Also, the control information for open files is kept 1in
ECS. Because the system has no facility for keeping such information
on the disk, it is kept in what is called fixed ECS space. The amount

The CAL Time-Sharing Systen

May 1971 Introduction

of fixed ECS which is set aside for a given user's process is
determined by his profile when he logs on.

Swapped ECS _space: Files and directories which are currently in ECS at
the request of a user's process are kept in what is called swapped ECS,
so that the system can free ECS space if it needs to by swapping the
files out to the disk. The amount of swapped ECS available to each
user is also determined by his profile at log on tinme.

10

!

The CAL Tiume-Sharing Systea

May 1971 2.2 The Editor

2.2 THE_EDITOR

Name: ‘ o : Editor

Code: : Fd-1.C
Author: James ' Morris, Computer . Science

Department, Unlversity ot Califor-
nia, Berkeley

Date: ' - Novemker 1970
Eavironment: CDC 6400: Time Sharing Systen
£:2.1 _Purpose

The Editor subsystem provides the 1SS user with facilities for
constructing and editing tfiles cf cocded information. A file coansists
of lines made up or coded characters endiny with the <carriage return
character (generated by the RETURN key on the teletype).

. 2_Usage

1. Calling_the_ Fditor

The Editor is called by issuing a ccmmand of the form:

i
oo

EDITOR fname

e o e st

If fname is omitted, NULL is assumed. Whenever the file specified

does not exist, an empty file is created.

The Editor responds to'being called by typing its'ptOmpt charact-
er, a colon(:), and then awaiting requests from the user. '

2. Editor Reguests

At any given tinme the Fditor is looking at a specific line of the
file fname, called the current line. When the Editor 1s called,

the current line is a pseudo-line which 1s always the top line of
a file; the significance of this line will become appareant later.

The following requests may be typed to move about the tile for the
purpose of creating, deleting, or editing text lines. Each
request is .terminated either oy a carriaqge return, or if more than
one request is typed on one line, by a semi-colon. However ' the
Editor does not actually receive the request(s) until a carriage

~

The CAL Time-Sharing System

May 1971 } 2.2 The Editot :

»

\

return has been typed. Several requests contain a "stop‘:condi-
ticn", represented by sc belcw, which specities how many lines the
request affects. '

T Insert the line(s) which follow
Dsc Delete the specified lines

T Move to the top of the file

i

¥sc Move torward over the specified lines
Bsc Move hackward the specified -number of
lines (sc wmust be an integer)
Psc : Print the specified lines
C/stri/str2/sc Replace the first occurrence of strl by
: Str2 1in the specified lines .
CGy/strl/str2/sc - Replace every occurrence of strl by str2
‘ _ : in the specified lines L
Esc Edit the sgpecified lines using the line
editor S ;
R,fname,uname Insert the contents of the tile fname,
: ‘ uname after the current line. ‘
W,fname,uname,sc . Locate (or create, 1if necessary) the file

fname,uname and write the specitied lines
(including the current line) onto it

F.fnape,uname Finished - create the file fpname froa the
latest edited version :
Q o Finished but do not write a new file.

The stop condition, §g; may have any one of fivevdifferent forms:

a number S :
.S where é;g is any string of characters not containing
/Str . a semi-colon.
$
a

A number specifies the exact number of lines, including the
current line, affected by the request; (the pseudo-line 1is also
counted as a line); .str specifies all lines up to and including a
line <containing the 'character string 'str as a subpart; /stc

specifies all lines up to and including a line beginning with 'str

(ignoring leading blanks); $ specifies all lines from the current
line through the last line of the file; and the absence of sc
usually (but not always) mweans one line. :

If the last line of the file is reached before the stop ¢onditionv
is met, the Editor types *BOTITOM and vwaits at the last line of the
file /(except in the M ccmmand) for another request. Whenever ~the

The CAL Time-Sharing Sybtem

May 1971 2.2 The Editor

Editor does not recoqgnize a requpst, it types 2?22?2 and wvwaits for
a request it understands.

Insert Regquest: I
This request must be followed immediately by a carriage retura
{Le.e., not a semi-colon). All characters and lines typed follow-:
ing it, even lines intended as requests, are inserted in the file
after the current line. When a new file 1s being created or when
information is beinyg inserted at the beginning of a tile, the
current 1line .is the pscudo-line mentioned above as being at the

top of all editor files. '

The end of an insertion is signaled by a carriage return at the
beginning of a line; only then will editor reguests be recognized.

For example, the following sequence of lines

EDITGR POFM
11

JAMES JAMFS

WEATHERBY GECRGE DUPREE
TOOK GREAT

CARE OF HIS MOTHER
THOUGH HE WAS THREE.

cr

M/JAMES; I

MORRISON MORRISON

calls the detor (which responds with a colon), lnserts five lxnes
into the file POEM (the end of the insertion is signaled by a
carriage return at the beginning of a 'line . which appears as a
blank 1line), then moves to the first line and inserts the line
MORRISON MORRISON between the first and- second ~lines. POEM now
consists of: ‘ . B T

JAMES JAMES

MORRISON MORRISON
WEATHERBY GECRGE UUPREE
‘TOOK GREAT

CARE OF HIS MOTHER
THOUGH HE WAS THREE.

'Additional lines can be added tc the end of the file by moving to

the bottom of the file and insecting.

My I

JAMES "JAMES
. MORRISON MORRISON .
' WEATHERBY GECRGE DUPREE

May

The CAL Time-Sharing Systenm

1971 o 2.2 The Editor

GNE RAINY MOENTNG

SAID TO THIS MOTHER,

YMOTHER,* HE SALD, SAID HE:

'YOU MUST WEVER GO DOWN TO THE END OF THu TOWN,
I7 YOU DON'T GO DOWN WITH ME.!

cr

The last line of text 1nserted becomes the new current Line. The
file POEM now contiins '

JAMES JAMES

MORELSON MOREKISON

AFATHFERBY GFCRGE DUPREE

TOOK GREAT

CARE OF HIS MCTHER

THCUGH HF WAS THREE.

JAMES JAMES

MORRISON MORRISON

WFATHERBY GECRGE DUEREE

ONE RAINY MOERNING

SAID TO HIS MOTHER,

*MOTHER,' HE SAID, SAID HE: . ' . ‘

'YOU MUST NEVER GO DOWN TO THE. END OF THE TOWN,

IF YCU DON'T GO DOWN WITH ME.* = . ,

Delete Request: Dsc

The delete request erases lines in the file beginning with the
current line and ending with the first line satisfying the stop
condition., Specifically, if the current line were the elghth llne
of POEM, i.e., the second MORRISCN MORRISON, then

D. RAIN or D/ONE
would delete three 1lines, leavings:

JAMES JAMES

MORRISON MORRISON

WEATHERBY GECRGE DUPREE -

TOOK GREAT

CARE OF [IIS MOTHER,

THOUGH HE WAS THREE.

JAMES JAMES

SAID TO HIS MOTHER:

*MOTHER, ' HE SALD, SAID HE:

'YOU MUST NEVER GO DOWN TO THE END OF THE TOWN,
IF, YGU DON'T GO DOWN WITU ME.' |

The CAL Time-Sharing Systen

May 1971 | 2.2 The Editor

Deleted lines are replaced temporarily by a line which prints as
ADELETED; it disappears however, as soon as the next move in the
file 1s wmade. One or more lines can be replaced by combining the
delete and insert requests. Specitically, if the current line .in
the file POEM 1s: THOUGH HE WAS THREE, the requests:

D:I
THOUGH HE WAS ONLY THREE.
‘cr

produces the following version of the poen:

JAMES JAMES

MORFISON MORRISON

WEATHERBY GECRGE DUEFREE

TOOK GREAT

CARE OF HIS MOTHER

THOUGH HE WAS ONLY THREE.

JAMES JANMES

SAIC TO THIS MOTHER,

*MOTHER, ' HE SAID, SAID HE: :
'YOU. MUST NEVER GO DOWN TO THE -END OF THE TOHN,f'
IF YOU DON'T GO DOWN WITH ME.®

which, incidentally, is the true version.

Move_*o_Top_ Reguest: T

The "top" requests asks the Editor to move to the top ot the tile,
and the empty line becomes the new curreat line. Thus to insert
text at the beginning of the file, cne might type: o

T:;I

TITLE:
‘DISOBENDIENCE -
BY A.A. MILNE

Now the file would appear aé follows:

TITLE:
DISCBEDIENCE
BY A.A. MILNE

JAMES JAMES
MORRISON NMORRISON
WEATHERBY GECRGE DUPREE

The CAL Time-Sharing Systenm

May 1971 2.2 The Editor

THAOK CREAT
CARE OF HIS MOTHER
THOURH HE WAS ONLY THRETE.
JANES JAMES
SATD TO (IS MOTHER
) - YMOTHER,' NE SAID, SAID UE:
"YOU MUST NEVER GO DOWN TO THE END OF THE TOWN,
IF YOU DON'T GO DOWN WITH ME.! ‘ ‘ ‘

The combination of requests, T;Dsc cr, can be used to delete lines
at the beqginning ot a file., For instance, ‘

T:D.LE:
or T1,D/TI
or "T;D2

will delete the first line of the file POEM leaving the lines from
DISOBEDIENCE on down to the end.

Note that to delete the first line of the file using a numerical .

stop condition, the number 2 was required rather than 1 or simply -

D. Recall that T rpositions the editor at the pseudo-line, " rather
than the first line of text, so that although it is not possible

to delete the empty line, it must be included in the count for the

stop condition. Indeed this consideration applies +to numerical
stop conditions for all requests issued immediately_following.the :
top request. ' o o A

Move_Reguest: MNsc

The move request changes the‘¢ﬁrrent line to the first line which
satisfies the stop conditicn. " For instance, in the latest version
of POEM, the requests ’ : o :

T; M9
or M/TOCK
will both position the Editcr at the line

TOOK GEEAT
regardless of the old current line position. Whenever the last
line in the file is redached betore the particular stop condition
is met, the. Editor continues searching at the top of the file

(i.e.), it wraps around). If the condition is never met, it types
*NOT FOUND and returns to the old current line,

May

The CAL Tiwme-Sharing System

1971 | | 2.2 The Editor 1,;

Since M3$ sends the Editor to the last line of the file,

. M5;1
new line ({3)
cr ‘

is the <casiest way to append lines to the file., Note that the
example on page 4 uses this methcd.

Bacxward Move_Reguest: Bsc

The backward move request roves the current line position backward
in the file the number of lines specitied by the stop condtion. A
number is the only stop condiition allowed with the B request.
Thus - : . . .

B
or : B1

oL

moves the current line poéition tack one line; B7 will move it

back 7 lines, However, an attempt toc back up beyond the first

line of text causes the Editor tc complain: - L
* BACK TOO FAR

and remain at the current line pcsition.

Print Request: Psc

The print regquest asks the Editor to print out all lines up to and
including either the 1line satisfying the stop condition or the
last line, whichever the Editor encounters tirst. The last line
printed becomes the new current line. Specifically, P or P1
prints the current line but causes no change 'in line position.
P2, however, is equivalent to P;M;P. Thus in the file POEM as it

stands so far: R ERREEETEE c

T;P2
evokes
DISCBEDIENCE

’ P

(Recall that the pseudo-line is included in ‘the count.).

e =R e ST

R e R e S i A e e S e S A S

The CAL Time-Sharing Systen

May 1971 2.2 The Editor

P33
will then cause
BY A.A. MILNE
JAMES JAME;
to be printed. The blank line, c¢f course, counts as a line.
E/MORRIS
prints the first and second lines of the poem, then
P$ |
prints the second line through the end.

If the end of the file is reached before +the stop condition is
satisfied, the Editor types out

*BOTTOM
and remains there.
If the Editor has been requested to print out far more than was
actually desired (i.e., is in Sorcerer's Apprentice mode), it can

be stopped by typing CRTL-SHIFT-P. The Editor responds vith a
colon and then awaits the next request. S

Change_Regquest: C/strl/str2/sc

This request enables the user to alter a line without retyping it,
as was required by the Dsc;I technique. The first occurrence (if .
it exists) of the character string strl is replaced by str2 in the
current line and all succeeding lines through the line satisfying
the stop condition. For example, the sample poem can be changed
further by sucan requests as: . » - ' L

T3;M/JAMES;C/MES/NE/
which alters the first line cf the pcem to:
JANE JAMES

Then, however, the subtlety of the Editor's ways is demonstrated
when' : . R o

The CAL Time-Sharing System

1971 | - 2.2 The Editor

C/4ES /NE/
causes the BEditor to respond
*NO CHANGE=

The ide=a was to change the second occurrence of JAMES in the first
line to JANE. Siuce it occurred at the end of the line however,
it was not followed by a blank. Theretore, the Editor was unable
to find the string to be changed and reported 1its fallure vlth the
*NO CHANGh message.

However, C/MES/NE/ ptoduces the following version of the poen:

DISCBEDIENCE
BY A.A., MILNE

JANE JANE

HORRISON MORRISON

WEATHERBY GECRGE DUPREE

TOOK GREAT

CARE OF HIS MOTHER

TEOUGH HE WAS ONLY TdREE.
JAMES JAMES

SAIL TO HIS MOTIIER,

"MOTHER, ' HE SAID, SAID HE:
'YOU MUST NEVER GO DOWN TO THE END OF THE TOWN,
*IF YOU DON'T GO DOWN WITH ME'.

The following series of requests.make the poem look more Iike the -
original by indenting all but the second to last line: S

T;M/ﬁIS;C// R V4
M$'C// /

Any character thdt is not.a letter may be used 1nstead of slash to
delimit the strlng. . For instance :

CI' .12

would also ihdent 12 linés.

Edit_Reguest: Esc

The CAL Tiwme-Sharing Systen

May 1971 2.2 The Editor

Global Change Reguest: CG/strl/str2/sc

This command 1is identical to the change request except that all
occurrences of stril in the current line are replaced by str2. For
examgle,

T;CG/HE/SHE/$

produces the following version of POEM ny changing all occurrences
of the word HE to the word SHE:

DISOBEDIENCE
BY A.A. MILNE

JANE JANE
MORRISON MORRISON
WEATHERBY GECRGF DUPREE
TOOK GREAT
- CARE OF HIS FATHER
THOUGH SHE WAS ONLY THREE.
JAMES JAMES
SAID TO HIS FATHER:
'*FATHER, ' SHE SAID, .SAILC SHE,
'YOU MUST NEVER GO DOWN TO THE END OF THE TOWN,
IF YOU DON'T GO DOWN WITH ME. '

On the other hand, T;C/HE/SHE/3 would have allowed the SeCOnd"fHEvy

on line 12 to escage unchanged.

The edit request offers an alternate method for changing the text
of the current line, It causes the current line to be treated as
if it had just been typed in, and the user is expected to enter
line editor requests.{see the section on the Line Editor) to
specify a nev one which will replace it. As soonh as the edited
line is completed and has been accepted, the Editor no longer
accepts Line Editor requests unless the edlt request is retyped.
For examfple, if the current line 1s.

THOUGH SHE WAS ONLY THREE.
the word "only" can ke deleted by tyring:

C/0NLY//

’
H s

1

R e e e

Bt ddd

e TN e Sk

The CAL Time-Sharing Systeﬁ

May 1971 ' 2.2 The Editor

The same edit can he done by typing:
E ,
CTRL-F S CTRL-F S CIRL-X CTRL-SHIFT-0

which copies the line& through the secoud occurrance of the letter
S, skips one word and .then ccncatenates the rest of the line,
prints it, and causes the new line to be accepted and substituted
for the old line. 3

To then as an afterthought use the line editor to change the word
SAiE to HE, the editor request must ke entered again followed on
the next line by the appropriate line editing requests., o

An attempt to use the Line Editor when positioned' at the empty
line, e.g.,T:;E evokes PSEUDO LINE SKIPPED from the Editor. The
Editor must be requested specifically to look at the line to be
edited, before the edit can be entered. . :

Read _File Reguest: R,fpame,uname

This ccmmand inserts the contents of the tile fname,uname ‘1%
immediately fcllowing the current line in the file. The last line
inserted ©becomes the current line. If, for instance, the second
verse of the poem in the sample were on the file SECOND, the
sequence of requests: o ‘ T -

M5; K,SECOND;T;:P3

would produce the first two verses of the poems

Arite File Reguest: W,fnane UBQE€:§£

This command creates the file fname,uname ! if it does not already
exist, and writes onto it the contenta of the <current file fronm
the current line through the line satlsfylng the stop condition.
If the stop condition 1is omltted, it is assumed to be $ instead of -
. For instance, after moving the second verse of the saaple onto
the current file, the poem cculd be edited into its original fora
and vwritten cnto the file KEEP using the following requests:

T;CG/SHE/HE/$;T;W,KEEP,,$

- —— v ——— - w0

me is the .name of a temporary directory to which the user has

S N R

The CAL Time~Sharing Systen

May 1971 | ' 2.2 The Editor

Finished Request: F,fname,upname ! ‘ l

This request tells the Editor that the editing is completed and
asks it to return control to the Command Processor. Before doin
so, it will leave the most recent version of the current file in
£CS under the name fpawme, cr if no name is given in the F request,
under the tname specified in the command which called the Editor
initially. In the «case where the Editor was called to edit an
already existing file and the editing session is terminated by an
F request with a different tname, both the original file and the
edited versicn will be kept.

Quit Request: 0

1f, after editing a file, the user decides it was all a mistake,
the Q reyguest can be used instead oi F. The Editor responds by .
leaving the original file in ECS unedited and not generatlng a nevw
flleo) :

2.2.3 Restrictions

The two change requests restrxct the number of characters in str2 to 50 :
characters. : ' :

The Editor permits lines to consist of up.to 160 characters but it is
suggested that they be restricted to a total of 80 characters to assure .
compatability with other processors, such as the Command Processor, ‘thel| .

Line Editor, and the teletype interface.

2.2.4 Notes

The Editor - works by copying files in a purely sequential fashion; at
any point one file is being read and a new one is beinqg created with
those modifications called for by the various requests, : ‘ '

A T (top) command causes the Editor to copy the remainder of the input
file to the output file, to make the cutput file the new input (file,
and to start creating a new output file, An M command which moves past
the 1last 1line of the file and returns to the top of the file, also
causes this activity. The two scratch files used tfor this see-saw
process are given the names lfpame and 2fname, where fname is the name

of the file declared when the editor 1is called. In general, the
process is as follovws: : S ‘ :

If the user calls the‘Edito: with:

12

The CAL Time-Sharing Systen

May 1971 | ' 2.2 The Editor

EDITOR ELATZ
then the Lditor

1) starts reading BLATZ (if it already exists) and writing
1BLATZ '
2) then reads 1BLATZ and writes 2BLATZ
3) then reads 2BLATZ and writes 1BLATZ, etc.

and at the end, assuming an F comnand, o
4) renames the mcst recent file written (1BLATZ or 2BLATZ)
with the original name ELATZ and deletes the other two files.

Thus, ‘in the eveut of a mind: disaster (for example, the user deleted
half the file inadvertently), a fairly recent version of the file aay
be found.under one of these names in the user's temporary directory.

5 13 f

The CAL Time-Sharing Systen

May 1971 2.3 Line Collector

A A D O IS 50 - b O e S s

Title: Line Collector

Code: LC1.0

Author: Jim Gray, Computer Science Depart-
ment, University of Calitoraia,
Berkeley

Date: Noveaber 1970

Environment: CDC 6400: Time Sharing Systen

2:3.1 Purpose

The line collector constructs a line from the TTY using the previously
typed 1line as a template. It maintains two lines simultaneously, an
old one and a new one., The old line is the last line received by the
Teletype and is local to the virtual teletype buffer; it may possibly|
be empty. A nev line is constructed from the o01ld one using the
characters typed in from the Teletype. To visualize the process of
constructing each new line, imagine tw¥wo cursors or pointers, one called
OLD which runs over the o0ld line and one called NEW which is positioned
on the new line as it is created., Normally when a character is entered
from the TTY, it is appended to the new line and both cursors advance
one place. If certain non~-graphic characters, comprising requests to
the line collector (see Figure 1) are entered, the cursors can be
manipulated so that, for example, characters are COPIED from the old
line to the new ope, or parts of the old 1line are SKIPped, or the
cursors BACKUP over the undesired characters.

One application for the line collector would be in conjunction with an
on-line compiler which performs a simple syntax check of each 1line as
it 1is entered. If the line is bad, it outputs a diagnostic, rejects
the line, and calls on the line collectocr. The user edits the old line
which still resides in the virtual buffer and resubmits it to the
coapiler.

2:3.2 Usage

The line collector accepts a number of requests for actions to be
performed on the old and/or new lines. Most of these 1involve moving
the cursors forward or backward to the desired locations. The actions
resulting from the requests are given below. In general, the actions
can be separated into five categories: copy, back up, skip, accept,
and other, In each of the first three categories, there are six
requests for specifying the various distances in the old and new lines
the cursors are to move, In the descriptions which follow, 1if the
first key(s) specified is (are) CTRL-, or CTRL-SHIFT-, the next
key must be pressed while the first key(s) is (are) still depressed.
"yord® is defined as a sequence of one or more alphanumeric characters
delimited by non-alphanumerics; when 1looking for the begqginning of a

The CAL Time-Sharing System

May 1971 2.3 Line Collector

wvord, the cursor disregards all non—-alphanumerics until 1t eacounters
one or more consecutive alphanumerics. For instance, in the line

*MOTHER,' HE SAID, SAID HE,

the beginning of the first word is the letter M, not the graphic quote;
and the end of the first word is R, not the graphic comma. "Next
character entered% refers to the first occurrence in the 1line of the
next character typed following the request. If at any time an edit
request cannot be fulfilled, the line collector responds with a bell.
In the examples, the cursor is represented by a vertical bar below the
line.

Copy Requests

1. Copy_one character: CTRL-A

The next character in the old line is appended to the new line,
and the character is printed. For example, if before the request
is issued, the old and new lines appeared as

014: THCUGH HE WAS ONLY THREE.

|
New:

the request would gproduce:

0l4d: THOUGH HE WAS ONLY THREE.

i
New: T

2. Copy one word: CTRL-S

The characters in the old line up to the next word boundary are
appended to the new line, and are printed. For example, 1if the
old and new lines appeared as they were 1left in the previous
example, the request would produce:

014: THOUGH HE WAS ONLY THREE.

|
New: THOUGH

If issued again, it would produce:

The CAL Time-Sharing Systenm

May 1971 2.3 Line Collector
0ld: THOUGH HE WAS ONLY THREE.
|
New: THOUGH HE

3. Copy up to _next character entered: CTRL-D

Characters ian the o0ld 1line wup to but not including the next
character entered are appended tc¢ the new line and printed. Given
the position of the caursors at the end of the previous exanple,
CTRL-D ¥ would produce

0ld: THOUGH HE WAS ONLY THREE.

{
New: THOUGH HE

|
A second such request of the form CTRL-D 0 would produce:

olad: THOUGH HE WAS ONLY THREE.

|
New: THOUGH HE WAS

4. Copy up to and _including the next chnaracter: CTRL-F

The characters 1in the old 1line up to and including the first
occurrence in the remainder of the 1line of the next character
typed are appended to the new line and printed. For exanmple,
using the lines in the last examnple, CTRL~-F N produces:

olad: THODGH HE WAS ONLY THREE.

|
New: THOUGH HE WAS ON

5. Copy to tab: CTRL-G

The characters in the o0ld line ug to the next tab setting (see
Other Requests below) are appended to the new line and printed.
Assuming there is a tab setting at print position 20, and the
cursors are positioned as they were left from the previous
example, CTRI-G produces:

01d: THOUGH HE WAS ONLY THREE.
i
New: THOUGH HE WAS ONLY

The CAL Time-Sharing Systen

May 1971 2.3 Line Collector

6.

Copy_remainder of old_line: CTRL-H

The remaining characters in the cld line are appended to the new
line and printed. CTRL-H has the following effect on the line 1in
the previous example:

0ld: THOUGH HE WAS ONLY THREE.
{
New: THOUGH HE WAS ONLY THREE.
i

Backup Requests

1.

2.

3.

Backup one_character: CTRL-Q

One character is erased from the new line by backing up the cursor
in both lines one place, €~ 1is printed 1in the next forward
position in the printed line. This request would have the
folloving effect on the lines in the previous example:

0ld: THOUGH HE WAS ONLY THREE.

|
New: THOUGH HE WAS ONLY THREE. <

|
and the actual image of the new line is:

THOUGH HE WAS ONLY THREE
|

Backup_one word: CTRL-W

All characters up to the last non-alphanumeric character are
erased by backing up the cursor in both lines. \ is printed in
the next (forward) position in the printed line. This regquest
would have the following effect on the lines in the previous
example:

0l4d: THOUGH HE WAS ONLY THREE.

|

New (printed):THOUGH HE WAS ONLY THREE. ¢\
|

{actual): THOUGH HE WAS ONLY
|

Backup to _next character _entered: CTRL-E

All characters in the new line up to but not includiang the first
occurrence in the Lbackward directicn of the next character entered

The CAL Time-Sharing Systenm

May 19N 2.3 Line Collector

4.

5.

6.

following the request are erased by backing up the cursor in both

lines. \ is printed in the next forward position. A request

such as CTRL-E N would have the following effect on the previous
example:

old: THOUGH HE WAS ONLY THREE.
|

Nev (printed):THOUGH HE WAS ONLY THREE. < \\
!
(actual): THOUGH HE WAS ON
]

Backup through npext character_entered: CTRL-R

All characters in the new% line wup to and including the first
occurrence in the backward direction of the next character entered
after the request are erased by backing up the cursor in both
lines. \ is printed in the next fcrward position. A request such
as CTRL-R W would have the following effect on the previous

example:

0l4d: THOUGH HE WAS ONLY THREE.
|
New (printed):THOUGH HE WAS ONLY THREE. <& AN
|
{actual): THOUGH HE
|

Backup to tab: CTRL-T

All characters in the new line up to and including the €first tab
setting encountered in the backward direction are erased by
backing up the cursor in both lines, N\ is printed 1in the next
forward position in the printed line. This request would have the
follovwing effect on the limes in the previous example, if there
vere a tab setting in position 10:

0lad: THOUGH HE WAS ONLY THREE.
|
New (printed):THOUGH HE WAS ONLY THREE. < \\\
|
{actual): THOUGH HE
l

Backup to_edge: CTRL-Y

The new line is erased completely and may be started anew. 4 is
printed in the next print position, the printer paper is advanced

The CAL Time-Sharing Systenm

May 1971 ' 2.3 Line Collector

and the carriage is returned. Thus, to change the 1line in the
previous example to read ALTHOUGH HE WAS etc., type: CTRL-Y
ALTHOUGH HE WAS ONLY THREE., After the back up reguest, the line
would appear as:

Old: THOUGH HE WAS ONLY THREE.

i
New: THOUGH HE WAS ONLY THREE. ¢ \\\\#

Then typing the first word of the new line would produce

0l4d: THOUBGH HE WAS ONLY THREE.

|
New: ALTHOUGH

Note that since the first word has more characters than it did in
the o0ld line, the cursor in the c¢ld line has run intoc the next
word. It would be handy to use the "copy to edge" request here,
but to do so would make nonsense of the line, i.e., ALTHOUGHE WAS
ONLY THREE. Instead the remainder of the nevw line must be typed
in, producing:

01ld: THOUGH HE WAS ONLY THREE.

|
New: ALTHOUGH HE WAS CNLY THREE.

|

It will be shown later how the "insert request™ can be used to
avoid this inconvenience.

Skip Reguests
1. Skip one character: CTRL-Z

One character in the old line is skipped by moving the cursor in
the o0ld 1line ahead cne character. $ is printed on the teletype.
Assuming that the cld line is:

*MOTHER," HE SAID, SAID HE,
l

the request CTRL-Z produces

0l4: *MOTHEB,' HE SAID, SAID HE,
l

New {(printed): §
1

The CAL Time-Sharing System

May 19711 2.3 Line Collector

2.

3.

(actual):

Skip_one word: CTRL-X

One word 1in the cld line is skipped by moving the cursor in the
01d line ahead tc the £first non-alphanumeric character. $ 1is
printed for each character skipped. This request would have the
following effect on the lines in the last example:

0ld: *MOTHER,* HE SAID, SAID HE,

i
New (printed):$$$3333

|
{actual) :

Skip to next character entered: CTRL-C

 em— o v

All characters in the o0ld 1line are skipped up to the next
character entered after this request by moving the cursor in the
old line up to that character. $ 1is printed in place of
characters skipped. CTRL-C H has the following effect on the
lines in the previcus examfple:

01l4: *MOTHER,' HE SAID, SAID HE.

|
New (printed) :$$5%333353%

|
(actual) :

|

If the cursors were positioned at the beginning of the 1lines, a
new version of the line could be obtained in the following manner
{the line will be shown after each request to 1illustrate the
action of the cursors):

Pirst type: CTRL-A (copy one character)

014 MOTHER,* HE SAID, SAID HE.
|

New: '
i

Then type,

SIST CTRL-D H (enter SIST 1instead of MOTH and copy up to the
beginning of the word HE)

old: '*MOTHER,' HE SAID, SAID HE.
|

The CAL Time-Sharing System

May 1971 2.3 Line Collector

New: YSISTER,"?
1

Then,

I CTRL-X (enter I instead of H and skip to the end of the word;
one could also say I CTRL-C (blank) to do the same thing)

old: *MOTHER,' HE SAID, SAID HE,
i

New: *SISTER,' IS
|

Then CTRL-D H (again, to «copy up to the beginning of HE, this
time at the end of the line)

old: YMOTHER,* HE SAID, SAID HE,
|
New: 'SISTER,*' I SAID, SAID
|

and f£inally, I, to finish the line

0l1ld: *MOTHER,' HE SAID, SAID HE,
|
New (printed):'SISTER,' I$ SAID, SAID I,
(actual): *SISTER,' I SAID, SAID I,
]

Note that the cursor in the old line has not yet reached the end
of the line; this is irrelevant as long as a copy 1is not requested

next.
4, Skip through next character entered: CTRL-V

All characters in the o0ld 1line through the character entered
following the request are skipped by moving the cursor in the o0ld
line to the character following the next occurrence of that
character in the line. §$ is printed for each character skipped.
For example, if the cursors were positioned as in the lines:

01l1ld: *MOTHER,' HE SAID, SAID HE,
1

New: *MOTHER,
|

(perhaps as the result of a copy through the next character
entered where that character was a comma), the reguest CTRL-V D,

The CAL Time-Sharing Systen

May 1971 2.3 Line Collector

folloved by a skip one character (CTRL-Z) and by copy to edge
request would produce:

0ld: 'OTHER,' HE SAID, SAID HE,
|

New

{printed): "MOTHER," $$%33333 SAID HE,

{(actual) s *MOTHER,' SAID HE,

5. Skip to_tab: CTRL-B
All characters in the old line up to the next tab setting are

skipped by wmoving the <cursor in the old line to the next tab
position. §$ is printed for each character skipped.

6. Skip to_end of line: CTRL-N

The remainder of the old line is skipped by moving both cursors to
the position at the end of the o0ld line. §$ is prianted tor -each
character skipped. For example, 1if a new line had been con-
structed as follows:

014d: *MOTHER,' HE SAID, SAID HE,
{

New: *SISTER,' HE SAID,
i

A CTRL-N request would move the old cursor to the position at the
end of the old line, leaving the new line as is.

Accept Reguests

There are four regquests which cause the new line to be accepted and
thereby mark the end of the requests that can be made for that 1line.
The first two cause the line to be accepted as is; the second two cause
the remainder of the o0l1ld 1line to be concatenated onto the new line
before it is accepted.

1. Accept Request: cr

Depressing the carriage return key enters the accept request. The
current newvw line is accepted as is, terminating the construction
of that new line.

The CAL Time-Sharing Systen

May 1971 2.3 Line Collector

Special Accept: CTRL-U {not implemented)

This request 1is identical to the accept request except that the
line collector notifies the calling routine that this line |is
special.

Concatenate _and Accept: CTIRL-F

A > o ——

This request appends whatever is left following the cursor in the

old line to the new line and then causes it to be accepted. For
instance, 1if only the beginning cf a line were being altered as
in:
0ld: *MOTHER,* HE SAID, SAID HE.

|
New: *SISTER,?

a CTBL-P request would cause the new line to be accepted as:
'SISTER,' HE SAID, SAID HE.

Concatenate, Print _and Accept: CIRL-O

This request 1is identical to CTRL-P except that the new line is
printed out in its final form. It 1is handy when quite a few
changes have been made to the 0ld line when creating the new line.

Other Requests

There are six other requests that can be made oOf the line
collector. They provide facilities for inserting text in a line,
setting and releasing tabs, tabbing, printing the current state in
both 1lines, and concatenating and reediting without having the
line accepted.

Insert Request: CLTR-L

¥hen entered an odd number of times since the beginning of the new
line, the cursor in the old line 1s not moved on Backup operations
or vhen characters are entered, thereby allowing the insertion of
characters into a line. <« is printed in response to odd numbered
entries of the request., Even numbered entries return the o01ld
cursor to its normal action and cause > to be printed. Suppose,
for example, the line THOUGH HE WAS THREE is to be changed to:
ALTHOUGH HE WAS CNLY THREE. The following series of requests
could be used:

10

The CAL Time—-Sharing Systen

May 1971 2.3 Line Collector

CTRL-L AL CTRL-L inserts the characters AL at the beginning of the

line:

0lad: THOUGH HE WAS THREE,
i

New

(printed): <AL>

{(actual) : AL

Then CTRL-F S CTRL-L ONLY CTRL-0 copies the old line through the
letter "S", iunserts the word "only®, and concatenates the remaind-
er of the old line, causes it tc be accepted, and prints the line
as it wvas accepted. The output con the teletype would appear as:

<AL>THOUGH HE dAS < ONLY THEEE,
ALTHOUGH HE WAS ONLY THREE.

Tab_Set/Release Reguest: CTRL-K

This request sets (releases) a tab stop at the curreant position of
the cursor in the new line when entered an odd (even) number of
times.

Tab_Request: CTRL-I

This request inserts blanks up to the next tab stop (both cursors
advance). Blanks are inserted in the printed line. For instance,
if the user wanted to indert a number of lines five spaces, and
the o0ld 1line started in print position one, he could set a tab
(see above) in print position 5 and start the new line with
request CTRL-I. Subsequent indented 1lines could be begun with
either CTRL-1 or CTRL-C (skip to next character entered) followed
by the first letter of the previous 1line.

Type State Request: CTRL-SHIFT-K

This request allows the user to see the current state of the
editing process; the printer paper is advanced to a fresh line,
the carriage spaces to the current position of the new cursor,
prints a copy of the remainder of the o014 1line, and on the
following limne prints a copy of the new line up to the current
position of the new cursor. For example, if CTRL-SHIFT-K has been
typed after CTRL-F S ("copy through the character S") in the last
example, the printed cutput would have been as follows:

1"

The CAL Time~Sharing Systen

May 1971 2,3 Lline Collector

<AL>THOUGH HF WAS
THREE.
ALTHOUGH HE WAS

indicating that, in the old line, the cursor was positioned before

the word THREE and then printing the new line as it had been
constructed so far.

Concatenate_and Re-edit Request: CTRL-SHIFT-L

This request combines some aspects of two of the requests
described above by appending the remainder of the old line onto
the new line, but instead of causing it to be accepted, it nmakes
this line the 01d 1line with the cursor positioned at the
beginning, The printer paper is positioned at the beginning of a
fresh 1lire, Thus the "new 1line" can be edited further before
being accepted,.

2:3.3 TSS Text Standard

The System Standard Text (Systext) is the standard method of storing
codad 1information for the Time Sharing System. Information in Systext
format exists in a file (a semi-infinite array of 60-bit words) and is
terminated by an end-of-information word. A Systext file is composed
of lines, which contain character coded information andi segments called
sloppy segments which contain no information.

Systext lines

A line is a sequence of 7 bit ASCII characters terminated by the
control character CR (= 155B). There is no limit to the length of a
line, and they may be split across file block boundaries. Each line is
packed left-justified into successive 60-bit words, 8 characters (56
hits) per word, The first U4 bits of cach word serve to signal the
begirning of a line: for the first werd of a line these 1leading bits
are 10C1; for all other words in a line they are 0000. <Consider the
lines ABCDEFGHIJ CR which would be stored in Systext as:

T 3 8 1
{1001 AIBIC{D}E]IFIG]H]) 10000 TJJICRj*|*|*]*]*)
i J i 4

Characters which follow the appearance of CR in a word are ignored.

Multiple blanks in a line are compressed by inserting a count of the
number of blanks rather than the blanks themselves. The ASCII
character RASC (= 173B) is reserved for this purpose. Whenever ESC
occurs 1n the Systext file, the character following 1t is interpreted

12

The CAL Time-Sharing Systenm

May 1971 2.3 Line Collector

as a blank count, 'n' (0 < n < 128). On output these +two characters
are replaced by n blank characters.

Character_ Representation

The internal ASCII code used in System Standard Text is the external
ASCIT + 1403 (mod 200B). The conversion is performed by the system I/0
routines, This scheme maps blark onto 0, U onto 20B and A onto U41B.
See Appendix A. Table 1, Non-graphic characters, however, are not
allowed to occur in System Standard Text. (Carriage return and ESC 1in
the context described above are the only exceptions.) Therefore, the
character % has been reserved as a special prefix for representing
non-graphic «characters; 1f the graphic following a % maps onto a
control character under the mapping: 1internal ASCII + 100B (mod 200B),
the pair is interpreted as that control character (see Appendix A Table
2). Otherwise the % leaves its successor unchanged. S0 %% represented
% and %% represented CR.

13

The CAL Time-Sharing Systenm

May 1971 2.3 Line Collector

Sloppy Segments

A slogpy segment in the Systext file is a group of n words (0 < n <
218) that are to bhe ignored. The first and last word of such a segment
are of the form:

-INDEF

-
6000 i

L

59 48

~ — -

PR R
o §

7 0

where n 1is the count of words in the segment. The system ignores the
middle 30 bits of this header word and the successding n-1 words. A
sloppy segment may not occur within a line and cannot be split across
file blcck boundaries.

End-of-informaticn

The end of Systext 1s signaled by an end-of-information (EOI) word of
the fcrm:

O e e

.
|
59 us

The low order 48 bits of the word are ignored.

14

The CAL Tiwme-Sharing Systen

May 1971 2.3 Line Collector

2.3.4 Line _Collector Actions

Calling the Line Collector (LC:ASCII)

The line buffer associated with a teletype is a seguence of words
containing Systext, headed by a word specifying a pseudo-character

count. The Systext may either contain compressed blanks or not,
depending on how the buffer is filled. Four actions are available for
manipulating the buffer: input a line, output a line, output a

character, and edit a 1line. The input parameters are:

IP1 D: action specifier
IP2 BD: 1line buffer holding <85 characters)

where the action specifier may ke

TP1=D no operation

IP2=1 Input a line, (IP2 is ignored).

A line is read in frcm the teletype and is then
returned to the user via the block data return
authorization, i.e., the block of words constitut-
ing the 1line huffer is returned in the parameter
RDAT BL: 1line buffer., Blank characters are not
compressed.

IP1=2 Dutput a line. The contents of the line buffer
specified by IP2 1is cutput to a teletype up to a
carriage return character, or when the pseudo
character count in the header word 1is exhausted.
I¥ +the 1line contains compressed blanks, the pair:
ESCn is treated as 2 pseudo-characters.

IP1=3 Output a character, The first word of 1IP2, which
is assumed to contain a single right-adjusted
Systext character, is sent to a teletype.

TP1=4 Edit a line. The line passed in IP2 becomes the
old 1line. {Rlank compression is not allowed.) A
line is then read frcm the teletype and returned to
the user as in 1P1=1,

1« The line collector limits the size of a 1line to 85 characters.
Should a 1line be constructed having mcre than B85 characters using an
insertion, all characters following the end of the 1insertion are
dropped. If a 1line exceeds 80 characters, the Concatenate Print and
Accept command will not print the line although the other functions are
still performed.

15

The CAL Time-Sharing Systemn

May 1971 2.3 Line Collector

2. Whenever a request rroduces the effect of another request of a more
specific nature, the line collector respcnds as if the more specific
request had been entered, For instance, if the cursors are positioned
at the end of the first word of a line and the request to "back up one
word" is given, the line collector respcnds as if the request "back up
to edge" had been given., Similarly, 1f the cursors are positioned at
the second letter of a word {which is not the first word of a line) a
"hack up one word" request causes a € (for "back up one character") to
he prirted rather than \ .

3. A special character in the middle of a word, e.g., DON'T or P,.OPS,
is interpreted by the line collector as a word boundary. For example,
if the cursors are positioned at the beginning of the word DON'T, a
"copy one word" produces DON instead of the full word. A second "copy
one word'" copies 'T, but then a "back ur one word" interprets ' as the
word boundary and stops at the T, printing € (see note 2}).

16

"he CAL Time-Sharing System

May 1971 . 2.3 Lina Colilector

Figuee 1o (33/35) _Telotype ¥eyboard and_€ontrol Charackegs

» Accept

O,

O ®
o)c

Insert Change

Concatenate

IlIIII/Iv
@64@

@0@@

Concatenate, Print, Accept

Concatenate, Re-edit

et

Ta

Z/Z
(Release)
Type State

up to edge (left or right)

oo/
ONO

up to Tab

\@ (&

Special
~ Accept
\ TAB
\
\

up to and v:nwcawsm next _
character entered

cv to the next: nrmnwnn»n
entered

" - one word

, one character

The CAL Time-Sharing System

May 1971 2.4 The SCOP® Simulator

2.4 THE_SCOPE_SINULATOR

Title: SCOPE Simulator

Code: ST

Author: Karl Malbrain, Computer Center,
Jniversity of California, B8erkeley

Date: February 1971

Fnvironment: Machine:CDC A000 Series

Operating System: CAL DISK TSS
Coding Language: COMPASS

2.4.1 Purpose

The SCOPE Simulator provides an operating environment for programs
written for Cal's 6400 batch system (SCOPE 3.0 or CALIDOSCOPE) ani
peraits interactive control by the user over the construction and
execution of such programs. It also provides a batch run facility for
background execution of small Jobs.

2.4.2 Method

The Simulator rumrs in t¥wo subprocesses in the user's process., The
lower subprocess coatains the simulator itself while the upper one
contains the fMuser's subprocess", i.c., the environment for the SCOPFE
program (e.d., registers, core, RA+¢1 checking, etc.).

Local files for the program as ell as 1interfaces into the user's
permanent files and the systen 1 bhrary files are generated,

The Simulator indicates that it is ready to accept requests from the
user by causing a *"qreater than" (>} symbol to be printed on the
teletype. The appearance of an "up arrow® (1) signals that the progranm
itself is awaiting a control request.

2,4.3 Usage

The SCOPE Sipulator is called by issuing the following reguest to the
Command Processor:

SCOPE f1

where £1 is a field length. In general, the field length may range
from 1000 to 50000, with 14000 ass umed if the parameter is omitted.
SCOPE will type out the time and date and then await the first comnand
after typing >. At this point any legal CALIDOSCOPE control request
can be typed in imwediately following the > symbol., For example,

The CAL Time-Sharing System

May 1971 2.4 Th2 SCOP® Simulator

>RFL, 50000
>RUN.
>LGD.

would increase the field length to 50000 (octal), compile a FORTRAN
program, and then read and execute it,

SCOPE Simulator requests may also be entered after the >,

The following are legal SCOPE Simulator requests:

SYSTEXT File Declaration: TEXT,fname

-3

The €file £fname is declared as a new SYSTEXT file and information
gyritten on it hy the running program will be translated to SYSTRXT
as it is written. For exanmple,

>TRXT,0UTPUT

would declare the file name OUTPUT to be a Systext (See Section
2.3.3) €ile ({(although it already 1is by default). Files that
already contain information in Systext (generated by +he %iitor,
for example) need not he declared. The proper conversion will bhe
performed on reads (or writes)., This request will not convert
into a systext file a file which already exists in some other

mode.

Request File Execution: TILE,fname

——— -

The file fpape contains a 1list of requests which will be
interpreted one by one as separate requests. An imbedded FILE
request causes a traansfer to the new file. 3411 messaqes that
would normally be typed out if the requests were entered individu-
ally are suppressed, except error messages. When an error -occurs,
the file 1is advanced past the next FEXIT request or to the
end-of-file, whichever occurs first, > is typed if an FYIT
request is reached normally, or if the end-of-file 1s reached.

control Message Printing: MSG,OFF or MsSG,ON

Normally, messages from the program are printed on the teletype,
These may bhe suppressed by:

>MSG, OFF
or rtestarted hy:

>MSG,ON

The CAL Time-Sharing Svstenm

Nay 1971 2.4 The SCOPE Simulator

All messages are written on the System log, however, regardless of

whether they appear on the teletype.

Handliug Remote Files: GET,fname
PUT,fname

The first time the Simulator references any file, it attempts to
obtain it from the user's temporary directory. Files in other
directories may be obtained via the GET request, The specitied
file name nmust never have been used by the program before, For
example,

>GET,LGO

requests that the file named LGO Lte obtained from ¢the Command|
Processor. The file may be closed and forgotten explicitly by the
PUT request:

>PUT,LGO

Piles which are not disposed of explicitly are returned when the
user finishes with the Simulator dwuring FIN request processing
(see below).

Step Mode: STEP

The STEP request ailows the user to trace the 'RA+1' calls which
the program makes on the Simulator. This mode of +tracing =ach
request is entered via:

>STPP

The <imulator prints each request in octal hefore it is performed,
then stops and waits for verification after printing a greater
than sign (>»). There are four responses that can be made, each
consisting of a single letter:

R means <call the BEAD ghost Debugger, Upon return,
anothetr > is printed.

S means perform the request.

£ means ignore the request and perform an END request
instead.

G means leave STEP mode and then do the request.

Any other letter is equivalent to S.

Loading_ Regu=sts

The simulator also provides the GPSL functions of loading. These nay
be invoked via the LDR 'RA+1' request or the following "control card®

requests:

The CAL Time-Sharing System

May 1971 2.4 The SCOPRE Simulator

Load and Execute Library Proqram: libname,paranms

Load and_Go: LGO,fname

e

The LGO request is identical to that described for CALIDOSCOP® 1n

. e s i et e

Load _Control: LDCTL,TSS
LDCTL,SCOPE

These requests +toggle the loader between normal and the special
TSS mode, in which all common blocks for each file are loaded are
allocated at core addresses following all the program bhlocks.,
This sorting is useful for separating read-only and read/write
sectioas of a subprocess. Note that the other LDCTL requests
described in the CAL Guide are also acceptable.

Overlay Request: OVERLAY,fname

If the loader is in TSS mode, a core image 1is writtean onto +the
file fname without banner words (see Appendix A), i.e., just the
contents of lcaded and linked core. This mode is used primarily
for producing subprocess descriptor files. TIf the loader is in
'SCOPE mode?, a '0,0' level overlay is produced starting at cell 7
through the last word loaded.

Run_Time Input

A running program can make a request for teletype input via the (S
*RA+1?' requnest:

59 42 23 18 17 0
L 1T 7T Y | 1
{ GSHN 101 Y]pointer to 100]
| il fword buffer]
i L L 1 B T ']

The Simulator prints the up arrow and wvaits for input. The line typei
in after the arrow is placed one character per word, rTight Jjustified
display code, zero-filled, in the buffer provided., The end of the line
as typed 1s marked by a zero vord.

Leaving the_ Simulator: FIN

The user exits from the Simulator by typing FIN after the >, When he
does so, the progranm?!s log is appended to the file OUTPUT and all files
are rewound and closed. Then the core file is deleted and control is
returned to the Command Processor.

The CAL Time—-Sharing Systen

May 1971 2.4 The SCOPE Simnlator

2:.8.4 Erroxr Messages

1. Request Trrors:

COMMAND WORD > 10 CHARACTERS, TRY AGAIN.
A vord in the regnest line exceeds 10 characters. The request
is ignored.

I HAVE® NO RECOLLECTION OF THAT FTILE!?

2 file name in a PUT request has never been used before. Tho>
request is ignored.

I RECALL YOU HAVE ALREADY USED THAT™ FILFE!

The #€ilename in a GET request has already been used. The
request is ignored.

NONSENSE COMMAND IGNORED, TRY AGAIN,
The request is not known and does not appear in the library.
2. CIO _Errors:
BAD BNFFER PARAMETERS.
READ AFTER WRITE ATTEMETED.
WRITE DURING READ ATTEMPTED.
Writing after a read is not implemented, except after an FOK.
UONENOWN FPCN CODE
The function code in the FET is unknown,

3. General Errors:

OIFTFER TS NEGATIVE.

s

POINTER > FL.
REQUESTED FL IS TOO BIG.
REQUESTED FL TS NEGATIVE.

UNKNOWN PP PROGRAM NANME.

The CAL Time-Sharing Systen

May 1971 2.4 Th2 SCOPE Simulator
u. Loader Errors:

FIELD LENGTH TOO SMALL TC LOAD PROGRAM

An address in a loader table ecxceeds the current field length,
Loading is abhorted.

FILE ENDS DURING TABLE

Before the word count of a icader table was exhausted, the end
of the file was encountered.

FILE IS NULL
Loading of null files is not implemented.
YGNORED, NOTHING SUCCESSFULLY LOADED

An overlay or execute request could not be done bhecause there
is nothing loaded.

LDR FILE YS MIXED ABS % RELOCATABLF.

A given load nmust be either overlay or relocatahle, but not
both.

NO ENTRY FOR XFER LABEL FOIND,

The label on a COMPASS END statement cannot be matchad to any
entry point.

NO TRANSFER LABEL SPECYIFIED. UNABLF TC START PROGPAH,
No starting entry point was spaecified,

TABLE ON LOAD ADDRESS < (.

UNKNOWN TABLE TYPE.

YOU CANX*T LOAD A SYSTEXT FILE.

QOther Errors:

BLOCK MISSING FROM A FILE.

This errcr can be <caused by a null file or a file that was
improperly written.

ERROR IN OCTAL NUMBER.

The CAL Time-Sharing Systen

May 1971 2.4 The SCNPF Simulator

FNT FULL.

ILLFGAL USER XJ CALL,

The user attempted to call the SCOPE Simulator.
LINE LIMIT FXICEED.
USER CPU ARITH-FRROR.

Internal Errors:

SCOPF TNTERNAL ERRORS -~ ZERO FNAME ON 1 FNT CALL.

SCOPE TUNTEBRNAL ERROR - NO FILE CAP ON FIO CALL.

The CAL Time-Sharing Systen

May 1971 2.% The SCOPE Simulatnr

Appendix A, File Structure

The CALIDCSCOPE fileset structure is simulated on TSS files by the
Simulator. A TSS file 1is <called a 'SCOPE file' when it has the
following form:

Individual logical records have a banner word at each end. Thege
banner words contain the information necessarv to scan through the
file and access records.

59 5, 53 49 35 17 0 file address
r hJ ¥ i} h - Y)
101 10 § O i 0 ! n ! 0
} i L A ’e 4. %
{ logical recori |
f n vords |
| levael L1 (not EOF) |
lv v v LI A - T %
14+ 1LY 1 Jo0g | n | w ! n+1
=_ i i 1 i - - A %
| logical record 1
| ® woris |
| level L2 (not EOF) |
}' Y Y R] T DA %
14 } L2 § 20B 1 m i 0 | n+m+2
H—+— + ¢ + 1
16 | 1178y 308 i (o) { 0 | n+m+3
—+—t + + } 1
17 v 117B41030R { 0 ! 0 I n+m+4
Y L A J. e i 4
The bits in the banner words are entered as:
59 EOR bit. Zero indicates a dummy banner.
58 BOF bi+t.
57 EGI bit. Set for the last banner in the file,
/53-50 Level number of previous record.
/ 49-36 FET code/status for previous record.
[35-18 Record length of previous recori
17-0 Record lenqth of next record.

S~ 51 P R T

bg _;.':_."3;-?&"’ o m& 9

The CAL Time-Sharing Systean

May 1971 2.6 BASIC

2.6 Running a_ BASIC Program

BASIC is called by typing BASIC to the ccmmand processor. When BASIC
is ready to accept statements, it will type BASIC HERE, followed on the
next 1line by its prompt character, a cclon (:). To create a progras,
insert mode is entered by typing I follcwed by a carriage return. Now
the 1lines of the program can be typed into the file. Note that, as in
the Editor, it is necessary to be in insert mode to add 1lines to the
progranm, If a line to be added has an error in it, BASIC will type an
error message and that line will not go into the file. Instead, the
line remains as the old line in the Line Collector so that it can be
corrected before being put into the program. If a bad 1line 1is in a
file that is read in with the R command of the Editor, the line does
not go into the program, and it is typed after the error message. A
line already in the program can be changed or edited, but if the new
"corrected" line has an error in 1it, it is typed after the error
message and the change will not be implemented. To aid in debugging,
some PAUSE statements may be added. PAUSE stops execution with a
message giving the next 1line to be executed, thereby allowing the
programmer to check values with direct PRINT statements, or to enter
any other direct statements, The program may be modified or changed in
any way during a PAUSE. Unless the last line is an END statement, the
program cannot be executed.

Execution of a BASIC program is started by typing RUN. All variables,
functions, and arrays are made to be undefined and execution of the
program starts at the beginning., If there are some variables which
should not be destroyed because they have been set with direct
statements or from execution of a previous program, execution can be
started with a direct GO TO. When the program encounters the END or a
STOP statement, it stops with the message EXECUTION COMPLETE.

The program may stop in the middle of execution for several reasons.
If there is an error in rumning, such as division by zero or a jump to
a non-existent line, an error message is typed out and execution is
halted. Direct statements and/or editing requests can then be entered
to discover and fix the problem. If, for example, the program jumped
to a non-existent 1line, it could be tixed by adding a line which was
forgotten or correcting the line number in the GO TO statement. After
the problem has been fixed, the program could be restarted with a RUN
statement or CONTINODE, which would restart execution with the 1line
where the error occurred. Executicn can be halted by executing more
lines than specified by a direct LIMIT statement. By wusing LIMIT, a
program can be prevented from getting caught in a loop. If a prograsm
gets in a loop, it is possible to get out by hitting the panic button -
CTRL-SHIFT-P. A message is printed as 1if an error had occurred.
Execution can be resumed by typing CONTINUE.

There are two ways to leave BASIC. These are the same statements as
are used to leave the Editor. (Q means to gquit and to destroy the

The CAL Time~Sharing Systen

May 1971 2.6 BASIC

program that was created. F,fname saves the text of the program ou the
file specified so that it can be printed cr loaded again later.

See PART FOUR - Languages and Processors: BASIC, for a complete
description of the language.

The CAL Time-5haring Systen

May 1971 2.7 3CPL

2.7 Using BCPL_under TSS

The compiler is invoked by typing BCPL to the Command Processor. The
compiler then waits for lines of the form:

T=innut;B=binary;C=compass;O=0code; N=name;T;CR

All parameters are optional and may appear in any order. If the
parameters input or compass are TTY, the 1input is taken from the
teletype or the COMPASS program printed on the telstype, respectively
The meanings of the parameters are as follows:

tefault
Parameter Value Use

Y TTY Designates the file containing the source
code to be compiled.

B Binput Designrates the file on which the relocat-
able binary will be written. R=0 sup-
presses the output of binary. Default is
BINPUT if T=INPUT or BBCPL if I=TTY.

C ¢} Designates the file on which a COMPASS

version of the program is writtsn, This
version may be assembled by COMPASS, C=0
suppresses COMPASS output.

0 NCODE Designates the scratch file to be used
for transmitting an intermediate obiject
code hetween passes of the compiler.

N same as T Gives a name to the binary and/or COMPASS
program produced; i.e., N=pame would
cause TDENT name to be the first line of
the COXPASS program.

(BCPL i€ TI=TTY)

T Canses cowpilation times to be printed,
CR Check reentrant.

After each compilation BCPL waits for another line and exits when FIN
is typed. ‘

The CAL Time-Sharing Systen

May 1971 2.8 Printer Driver

2.8 THE_PRINTER_DRIVER

Title: Printer Driver

Code: PD1.0

Author: Keith Standiford, Computer Center,
University of California, Berkeley

Date: December 1970

Environment: CDC 6400: Time Sharing Systen

2.8.1 Purpose

The printer driver is an interim program which allows the line printer
to be used for listing long files as well as files containing lines
with more than 72 characters. (If lines with more than 72 characters
are printed on the teletype, characters past 72 will all be printed
directly cn top of one ancther.)

228.2 Usage

The printer driver is called by entering

PRINTER fnanme
wvhere fname is the name of the file tc be printed.
The printer driver should respond:

TSS PRINTER DRIVER VER 3.0
ENTER TITLE LINE

If instead the second line reads
FILE NOT SYSTEM STANDARD TEXT

it m@means that fname is either a non-existant (empty) file or that it
was constructed under the SCOPE subsystem without asking for system
standard text format.

The ENTER TITLE LINE should be answered with a line indicating the ijob
number and name under which the output is to be filed in the output

area.
The printer will respond to the title line by asking
SCOPE FORMAT CONVENTIONS?
to find out whether the first character of each 1line should be

interpreted as a SCOPE carriage ccntrol character (see figure 1). A
response line with a Y in column one is interpreted as a "yes"™. If ¥

The CAL Time-~Sharing Systenm

May 1971 2.8 Printer Driver

does not appear in column one, the printed file will be single spaced
vith an automatic page eject after 56 lines, and the first character of
each line will be printed.

Figure 1. SCOPE_Carriage Ccntrol Characters

Character Vertical Spacing before Printing
blank one line
0 two lines (dcuble space)
1 top of next page {line 6)
+ no advance before printing?

- three lines (triple space)

2 skip to next of lines 9,36 (next half page)

3 skip to next of lines 8,16,44 {next one-third
page)

4 skip to next of lines 7,21,35,49 {(next quarter
page)

6 skip tc line 1 following concave paper fold

7 skip tc line 1 following convex paper fold

8 skip to line 1

X single space and suppress automatic page eject

until Y control character

single space and resume automatic page eject
single space and suppress automatic page eject
for this line only

N <

There is a lockout mechanism? fcr the printer since only one user can
have the printer at a time. 1If the message EVCH CLEARED appears next,
the user has the printer and his teletype keyboard becomes 1inoperative
while the file 1is being printed. The message PRINTING ... should
immediately follow EVCH CLEARED. If it does not appear in a few
seconds, the printer driver has gotten into trouble. One should then
take the termination exit below.

Occasionally the printer driver may type:

FRINTER NOT READY or HARDWARE EEFROR or
PAPER OUT ON PRINTER

or words to that effect, to indicate that the printer itself is having
trouble, e.g., 1is jammed, or out of paper. The printer driver will
then type WAITING. Since nothing can be printed until the printer is
made ready again mechanically, the user should notify an operator in
the machine room (2-3043).

! Not implemented (1/71).
2 The name of the lockout is PRNLOCK, OPERATE.

The CAL Time-Sharing Systen

May 1971 2.8 Printer Driver

After about 30 seconds to a minute, the printer driver wili check to
see if the error has gone away. It will type PRINTING ... and attempt
to continue. If the error still has not been rectified, the message
will re-appear. For any message other than PAPER OUT ON PRINTER or
PRINTER NOT READY, the condition, hopefully, is temporary and should go
avavy. If this reoccurs several times, the user should notify the TA
and take the termination exit described in the next paragraph. He
should then attempt to print the file again (the printer lock may be
lost; consult the TA). If the trouble persists, the operators should
be notified of a persistant hardware failure.

If, however, the message

PRINTER LOCK ERROE, SORRY
ABORT

appears, the printer has detected that two printer drivers vere
attempting to run at once. This is possible only if someone has
recovered the printer 1lcckout mechanism. In this case, the printer
driver aborts and returns immediately to the command processor. The
user should attempt to print his file again.

If the printer seems to be taking much longer than it should, the
process may be terminated with a panic (CTRL-SHIFT-P) followed by
RECALL, which should return to the Command Processor.

Under normal conditions, when the file has been printed, the prianter
driver will return control to the Command Processor, which signals its
presence by typing

COMMAND PROCESSOR HERE
1

.

and awaiting the next input line.

The Time-Sharing Systen

May 1971 2.9 Display Driver

2.9 THE_DISPLAY DRIVER

Title: Display Driver

Code: DD1.0

Author: Keith Standiford, Computer Center,
University of California, Berkeley

Date: Fekruary 1971

Environment: Machine: CDC 6000 Series

Operating System: CALTSS
Coding Language: COMPASS

2.9.1 Purpose

The display driver is designed tc allow the operator to display
important information about the system as well as to use the displays
for debugging.

The conscle consists of two CRT display screens and a typewriter-like
keyboard. The CRT screens are divided into coordinates.! Approximately
40-50 coordinates at the top of each screen contain header information,
while an equal number at the bottcm are reserved for displaying
type-ins from the keyboard. The remaining center portion of the
screens is left for the various displays. {See Figure 1.)

Fiqure 1. UTisplay Screens

/ N / \
/ [channels] display name \ JCALTSS [#UNP*] dl_gl_l nas AN
| [states] keyboard name | | title 2.0..@ |
| i | |
| i] |
| | i |
|] 1 1
| i l [
| | | l
\\ l i |
[error line] / N\ /

\[current _input line] / \ w4

The right screen header contains the Time-Sharing System identification
title in large letters, the "system unprotected flag", the right screen
name, and the P-ccunter. The left screen header contains the channel
statuses, the system state flags, the left screen name, and the current

—— i — o S . o o i "t i i

! See Peripheral Equipment Manual.

The Time-Sharing Systenm

May 1971 2.9 Display Driver
logical keyboard name. The system state flags are interpreted as
followss

W idle

U user program running

S system running for user progranm

P ECS swap in progress

B swapper calculaticns

I interrupt code running

The lower portion of the left screen contains a line for error messages
and one on which keyboard type-ins aprpear.

Three types of displays are available: CM/ECS displays for presenting
the contents of areas in central memcry or Extended Core Storage; user
displays driven by programs inside the system and used for systenm-
operator interaction; and the special M display, which provides ECS
System statistics prepared directly by the display driver. Just as the
console screens can present several types of displays, the console
keyboard can be used to transmit messages to other programs besides the
display driver. The term 1logical keyboard is used to describe the
multiple functions of the actual comscle keyboard. It is anticipated
that most of the system-operator interaction will occur via the logical
keyboard arrangement.

In addition, the display driver keeps the real time and date, which are
available to user processes via an ECS system call. In conjunction
with the real time clock, the display driver provides a set of clocked
event channels for processes desiring to wait until a specified tinme.
{See 3.6 Event Channels.)

2.9.2 Method

Assignment of display names is as follows:

A-D CM/ECS displays
E-L User displays
M ECS system statistics

User displays are implemented by means cf a display buffer (an ECS
file) and an event channel. The display buaffer coasists of 32
eight-word line buffers which may be writtem into by a user program and
will be copied onto the screen by the display driver when selected by
the operator. Fach 1line buffer has cne header word follovwed by seven
data vwords {see Fiqure 2). The intensity at which a message appears on
the CRT screen is controlled by a parameter in the line buffer header
word. Data from the line buffer are output verbatim, beginning with
the high order byte of the word following the header word and
continuing until ct bytes or the end of the buffer is reached. Data is
assumed to contain positioning information and display code (or dot

The Time-Sharing Systenm

May 1971 2.9 Display Driver

coordinates if dot mode is selected). Note that a program using the
display may write anywhere on the screen. Therefore care must be taken
not tc overwrite screen headers or the keyboard display area.

Figure 2. User Display Implementation

display buffer line Luffer
g | r R
0} line buffer | 01 header i
t 4 4
“' " " ! “1 '
L 4 1 P]
L A k]
2I n " ‘ 2' l
F 4 t {
. . | 4] |
ol N i 51 |
| | 61 i
]] 71 |
i b | 1 ;|
L R
31§ " "
L 3

line buffer header wcrd

EJ L 4 1

[9 1

\/ » 7/ 7/ 1brite | fcn 1 ct |

L A 4 i F
24 12 12 12

brite 1is the relative brightness c¢n the screen of the data in the
line buffer. The ncrmal range is from 1 to 5 with the
brightness propocrtional to the value of brite. A value of 1
is the normal brightness, and a value of 0 is equivaleat to a
value of 1. If brite is 6, the wmessage will appear at a
brightness of S5 and will flash on and off about once a
second. If brite exceeds 6, it will be assumed to be 1.
Values for brite greater than 1 or 2 must be used sparingly;

too many lines too bright will cause the screen to flash
badly and the display driver to rum slowly.

fcn 1is half of the function code sent to the device.2 fcn=xyB
where X is the mode and y is the character size:
x=1 indicates character mode
x=0 indicates dot mode

- — - ————— " - " —— o > -

2 See Peripheral Equipment Manual.

The Time-Sharing Systen

May 1971 2.9 Display Driver

If x=1 then y=0 specifies 64 characters/line (small)
y=1 specifies 32 characters/line (medium)
y=2 specifies 16 characters/line (large)

Ctherwvise y is ignored.

Since x and y are each represented by three bits, only the
lower 4 bits of fcn are significant.

ct 1is the length (in 12-bit bytes) of the data to be output. For
example, if c¢ct=35, 35 bytes are output; if ct=0, nothing Iis
output.

After the file <containing a user display has been changed, an event
must be sent to the display driver to insure that the changes are
reflected 1in its copy of the display, in case it happens to be showing
that display on a screen., This event is a bit mask, with each *1' bit
corresponding to an updated line. The lines are indexed 0-31 in the
buffer, and the bits are numbered accordingly, with bit 0 at the 1low
order end of the word. No response signaling completion will be sent
to the user progranm.

The M_disrlay consists of the major system clocks, the current date and
time (or the date and time from deadstart if never entered by the
operator), some ECS system statistics, and some error statistics. The
ECS system statistics currently ccnsist cf the ECS free space, ECS slop
space, the number of allocated blocks and the number of free blocks.
These statistics are subject to change as required by further develop-
ment of the ECS system. The error statistics are displayed in the
event of a system disaster.

A logical keyboard is implemented as a 12 word event channel which can
hold the longest message that can be typed in at the console keyboard
(64 characters) plus part of another message. Messages are sent 10
characters per event 1in left-justified display code.? As many events
will be sent as are required to contain the message, The end of a
message 1s signaled by a carriage return (60B) or by a "you lose" event
if the buffer overflowed and part of the Bessaye was lost., The
operator is also notified of lost data by an appropriate error message.

3 The keyboard space bar maps into OOB in a message, rather than 55B
{blank).

The Time~Sharing Systen

May 1971 2.9 Display Driver

Note that there is no guarantee that the last event will contain zero
fill following the carriage return. Note also that with this implemen-
tation, it 1is risky for two user processes to share a keyboard, since
if two processes are hung on the same keyboard event channel, and a
message greater than 10 characters is sent, each will get only part of
the message. Capabilities in user displays and keyboards are 1located
in the master device C-list. {See the section on Allocation.)

2:9%.3 Usage

Keyboard _Requests: Entries made by the operator are displayed in the
lower left of the left screen. All lines beginning with the character
*/' are interpreted by the display driver as display requests. Those
not beginning with */' will be sent to the current default keyboard.
There 1is also provision for sending a message to a keyboard other than
the default keyboard as well as for sending a message beginning with
*/'. Blanks are ignored except in user messages and text commands such
as DATE, PASS, and LOCK. If a wmistake 1is made while entering a
request, the backspace key erases characters one at a time, while the
unlabeled key to the left of '=?!' clears the entire line. It is assunmed
throughcut the following descriptiocns that all lines end in carriage
return.

1. Send message_to logical keyboard: /p.=msq

This request can be used to send a message to a logical keyboard which
is not the <current default keyboard. 1 is a legal logical keyboard
name (the letters A-H) and msq is the literal text to be sent. If no
user program desires a message frcm that keyboard at the time it is
sent, the message is saved in a buffer (actually an event channel).
when the buffer becomes full, a message indicating lost data will be
given,

2. Change_default keybcard name: /USE,n

This request changes the current default logical keyboard to the one
specified by n, where n is a legal logical keyboard nane.

3. Change display cn_screen: /1l,r

This reguest changes the display shcwn on the left screen to 1 and on
the right to r, where both 1 and r are legal display names (letters
A-M). Either 1 or © may be omitted and the corresponding screen
display will remain unchanged. If r is cmitted, the comma may also be
omitted,

4. Modify CM/ECS displays: /i,addr-expr

Core displays consist of four grougs of eight consecutive Central
Memory or ECS words each. The area displayed may be changed using the

The Time-Sharing Systenm

May 1971 2,9 Display Driver

"modify" display request. i and addr-expr are both address expre-
ssions, which are strings of octal digits optionally suffixed by one of
the following characters:

for a CM address (default)

for an ECS address

for a positive number (ignocred)

for a negative number (number is complemented)

I + 80

An address expression is treated as a 60-bit quantity.

In the "modify display" request only C and E have meaning. i may be a
number from 0 to S with the following interpretations:

0-3 set the 1ith word group to display the eight
addresses starting with that given by
addr-expr

4 set all four groups to display consecutive
words starting at the address given by
addr-expr

5 add the exgression to the current starting
address of each group; select repeat mode.
Repeat mode causes the value of the expression
to be added repeatedly to the starting address
of each group, thereby providing a scan of
memory. To leave repeat mode, the operator
clears the message line. This may be accomnp-
lished by either pressing the clear key (the
unlabeled key to the left of '=') or backspac-
ing past the beginning of the message.

Note that where an address is nct required, C and E suffixes are
ignored. For example /4E,1 is treated the same as /4,1 while /4-,1 1is

illegal.

5. Operator date and time: /DATE,n/4/Y
/TIME,hh.RB.SS

Date and time are entered in the above formats. The delimiters "/" and
L are interchangeable. All numbers are expanded to two digits, if
not specified as such, by adding leading zeros. No zero fields are
allowed in DATE, and no trailing period 1is allowed in TIME, but
othervwise no checks are made.

6. Clear and restore system_protecticn: /PASS
/RSP

The system is normally protected. The oc©perator may enter a three
letter password after typiag /PASS. If the password is accepted, the
system unprotected flag will be set and *UNP* will appear on the right

The Time-Sharing Systen

May 1971 2.9 Display Driver

screen header. It will remain until /RSP is entered to restore systenm
protection.

7. Restore to initial state: /RESTORE

This request causes the display Adriver to return to an 1initial state
defined at deadstart tinme. Although the operator should never need
this request, is has proved useful in dektugging since, in the event of
a system crash, the display driver may be waiting for aan event which
¥ill never occur, thus causing some part of its program to halt.

8. Lock and unlock CPU_ *: /LCCK
/UNLOCK

When /LOCK is entered, the display driver interrupt code will not give
up the central processor until /UNLOCK is entered.

9.CM/ECS store *: ,saddr-expr = value

The contents of Central Memory or ECS may be altered with this request.
Both addr-expr and yvalue are address expressions as described above

under 4. E and C are ignored for value, which 1is interpreted as a
60-bit word quantity.

10. Manipulate channel_*: /reqan{,mmom)

There are several regquests available for manipulating I/0 channels.
These are typed in the above general format, where req identifies the
request, nn 1is a channel number (octal), mmmm is an output value
(octal). n and mmmm will be right-justified, =zero-filled by the
display driver. The folloving requests are provided:

/ACNnn activate channel nn

/DCNnn deactivate channel n
/FANDD,mEEM function mEER on channel nn
/OANnn,mRBR output mmmm on channel n

The <channel status is checked, and these requests are refused with the
error message NOT SAFE it conditions are unfavorable. In order to use
these requests, display M must be showing on at least one screen. If
it is not, the error message NEED SCREEN M appears.

System_Disasters

A section of program within the display driver is devoted to checking
for system disasters. Wwhen one o©ccurs, it reinitializes the other
programs in the display driver, places the M display on the right

——— ———— A ———— V- " <t

4 This request requires that the system be unprotected.

The Time-Sharing System

May 1971 2.9 Display Driver

screen, clears the left screen and ccmmits suicide. The M display then
flashes disaster to indicate that the system is dead. It shows the
address of the jump to DISASTER + 1, and, if the disaster was due to an
ECS error, the absolute ECS address of the first bad word contained in
the unsuccessful transfer is displayed.

The demise of the disaster check routine is followed within 100 msec.
by the death of the clocked event channel driver when it tries to make
clocked event <channels tick. However, the console keyboard still
accepts requests normally. Therefore, for instance, CM can be examined
and modified. 1In fact, three possible ccurses of action exist:

la. Nothing is done or the deadstart button is pushed - with no
repercussions.

1b. The operator uses the disglay carefully and possibly disco-
vers the problen.

2. The operator types a request for which the display driver
requires help from the system. The display driver issues the
message NOT SAFE.

This will occur upon entering any of the following requests:

Send message to lcgical keyboard
DATE and TIAME

LCCK and UNLCCK

ECS store

Note: RESTORE may cause strange results since it reincar-
nates the disaster check routine.

3. The operator tries to display ECS, which may hang the display
updater. This condition is not serious since the keyboard
still responds. To correct the situation, the screen should
be set to contain only Central Memory, then /RESTORE should
be entered. For exanmple,

/A {contains ECS; updater hangs)
/4,0 {contains CHM only)
/RESTORE (disaster check occurs again)
/A (desired results!)

The CAL Time—Sharing Systen

May 1971 3.1 Files

3.1.1 File Structure

A file is a sequence of addressable 60-bit words used to contain

informaticn, such as program <code or data. All CAL TSS files are

constructed in a symmetrical tree structure (see Fiqgure 1.) so as to]
permit a large file address space and, at the same time, to allow

incremental allocation of file stcrage space. The addressable words of

the file are contained in blocks c¢f unifcrm length called data blocks

which form the "leaves" of the file tree. The non-terminal nodes of

the tree are called pointer blocks and contain 1links to either data

blocks or other pocinter blocks.

For any file, there 1is a sequence of positive integers which are
specified when the file is created and which describe the shape of the
file tree, The first number in the sequence is the number of branches
extending from the root ¢f the tree. Each successive integer in the
sequence 1is the number c¢f branches frcm each non—-terminal node (pointer
block) in the file tree at the corresponding level. The last shape
number is the unifcrm size of the data blocks. All shape numbers,
except the first omne, are required tc be powers of two to facilitate
file address decoding. Since the tree is symnetrical, these numbers
completely describe 1its shape, and their product gives the total
number, n, of addressable words in the file. These words are addressed
from top to bottom using consecutive integers ranging from 0 to n-1.
For instance, if the shape numbers are 2,4,128, there are two branches
extending from the root of the tree, each pointer block at level two
branches to four data blocks, and the tree contains eight data blocks
of 128 words. The four data blocks attached to the left side of the
tree contain addresses 0-127, 128-25%, 256-383, 384-511, respectively,
and those on the 7right side <contain addresses 512-639, 640-767,
768-895, and 896-1(023.

Use of the tree structure means that, even for very large files, the
need to allocate continqgucus file stcrage space 1is 1limited to the
filets data block size. 1In addition, while the maximum size of a file
is specified when it is created, unused or non-existant portions of the
file are not allocated space until they are needed.

Whenever necessary, therefore, data blocks can be added to (or deleted
from) a file at any file address srecified by the user. Appropriate
accounting is performed to charge (or stop <charging) for the space
occupied by the block and to coatrol (i.e., limit) use of the storage
space. Pointer blocks connecting the data block to the root of the
tree are supplied when necessary. Newly created data blocks are
initialized to zeros. Data blocks wmay bLe moved from one file to
another, 1f the data block sizes are the same, and thus data blocks
already containing data may be added to a file.

The CAL Time-Sharing Systea

May 1971 ‘ |
3.1 Files

Fiyure 1. TFile_Tree

- . - > — - e

Level 3

127

[.

K

Level 2
128 words
Level 1 o
> Level \
pointers _
Level 2 3~ R
| Polnters |—J
File Root of"

Descriptor File Tree

se

[

[|

Flle Shape = (2,4,128)

The CAL Time-Sharing System

May 1971 3.1 Files

3.1.2 Disk_files

Since CAL 1SS uses ECS (Extended Core Storage) as its primary memory
and since ECS space is limited, files in CAL TSS may reside either on
the disk or in ECS. In fact, the disk 1is used for permanent file
storage, and disx files which are active, or open (see below), have a
file incarnation in ECS which has the same structure and shape as ‘the
disk version. Portions of the file (i.e., data blocks, corresponding
to file address ranges) are copied between the disk and ECS and are
added to or deleted from the ECS incarnation of the file according to
the requirements cf the user process. This procedure is referred to as

For a user process to read (write) a file requires use of the "file
read (write)" action, which transfers wcrds between the address space
of the running sukbprocess and the data block(s) of a specified file in
ECS. The user indicates the address in the file of (for) the desired
informaticn, the address in Central Memory of the area to be read into
(written from), and the number cf wcrds to be read (written). If the
data blocks containing the required range of addresses have already
been attached tc +the ECS incarnation of the file, the transfer of
informaticn is performed in a straightfcrward manner by the ECS level
of the systen. If, hoswever, cne cr more of the data blocks are not
present in ECS, the transfer proceeds until the first non-present file
address 1s encountered, whereupon F-return action (see "process con-
trol") passes control tc the disk subsystem. Here the entire transfer
is performed by 1) <copying or re-copying blocks which were already
present in ECS and 2) attaching the blocks which were not present in
ECS, copying these blocks, and detaching them again. This attach,
copy, detach process is performed for each required data block which
was not present in the ECS version c¢f the file. Required data blocks
which were present are transfered with normal ECS 1level file read
(write) actions.

The contents of each subprccess address space are specified by the
subprocess map (see "sutprccesses"). The map establishes a relation-
ship between sections o0f the subprocess address space (aemory) and
porticns of ECS files., Whenever a sulprocess is swapped into central
memory, the appropriate pcrtions cf the files designated Dby the
subprocess map are copied frcem ECS into central memory. When the
subprocess 1is swapped out to ECS, the reverse operation is performed
(except for map entries which are *"read only"). Portions of disk files
which are to be used in a subprocess map are attached to the process
and held in ECS as long as the map entry remains in force.

The CAL Time-Sharing Systen

May 1971 3.1 Files

3.1.3 Disk File Oren-Close

In order to keep track of which disk files are in use and therefore
must have an ECS incarnation and file control information (file header
block) 1in ECS, programs must explicily open and close disk files. In
this way, the system can maintain a ccunt of how many processes are
using any particular file. Whenever a process intends to use an
existing disk file, it must "open" the file by presenting a disk file
capability for the file. A disk file capability contains in its 2nd
word the disk file unique name and the disk address of the file header
word. The disk system will return an ECS file capability for the ECS
incarnaticn of the disk file. When a prcgram is through with a file,
it should "close"™ the file. Although the open and close actions
normally occur in pairs, it 1is possikle, and 1in some situations
advantageous, for a process to open a file more than once before ever
closing it (e.g., separate subprocesses using the same file). If only
one subprocess at a time used a file, the disk subsystem could simply
maintain an open counter which it incremented each time an open was
issued and decremented when a close was issued. A zero count would
indicate that all rrocesses were through with the file. However, since
more than one subprocess can use a file at a time, the disk systen
maintains both a 1local open-close «counter which keeps track of the
opens and closes by a single process, and a global open-close counter
which indicates how many different processes are using the file.

When a process opens a disk file, the 1lccal open count for the file is
incremented. If the loccal open ccunt went from zero to one, the global
open count is incremented. If the glcbal open count went from zZero to
one, the file header block is brought from the disk into ECS, and an
ECS incarnation of the file is created. This procedure is reversed for
a "clcse" action. Whenever the global ccunt goes to zero, the disk
system deletes the ECS incarnation of the disk file after updating the
contents of the disk versicn of the file.

While a disk file is open and being @manipulated, care 1is taken to
insure that the wversicn of +the file on the disk 1is readable at all
times. Data blocks of a file which have been modified are written at
new "swapped" locations on the disk leaving the original "fixed"
versicn of the file unmodified. When the file is finally closed by the
last fprocess holding it open (cor upon request for a M"pseudo-close"),
pointer blocks are written to new locaticns on the disk to reflect the
new lccations of the modified data blocks. After all pointer blocks,
except the root block, have been successfully written, the root block
is re-written at the same disk locaticn to tie the modified portions of
the file to the rcot (or header) block. This mechanism permits the
system to write file data blocks at the first available disk position
and preserves the cld contents of the file in the event of a systen
failure, The system may, at any time, initiate a "pseudo-close" to
reclaim space on the disk by causing the file contents to be updated.

The CAL Time—Sharing Systen

May 1971 3.1 Files

Another mechanism is also available tc the user who must insure that
the <contents of his file on the disk are updated only after a sequence
of changes to the ftile have all been ccmpleted. The contents of two
files can be interchanged without dcing any copying. The interchange
is implemented in such a way that one of the files will either remain
unchanged or have the contents of the cther file regardless of a system

failure at any time.

3.1.4 Data_Block Attach-Detach

#hen a pcecrtion of a file is used for reading or writing or is in a map
entry, it must exist in the ECS incarnation of the file. When a data
block 1is first Mattached", it must Lke copied from the disk to ECS.
This transfer is accomplished in two steps in order to avoid a time
interval during which the data block exists in the ECS file but does
not have the correct contents., A holding fiie in ECS is used so that
during an attach, the informaticn is copied from the disk to a block in
the holding file. Once this copy is complete, the block is moved to
the proper block c¢cf the ECS incarnaticn of the disk file. User
programs c¢an attach a blceck of a file whenever the block is needed or
will be needed socn., Placing a porticn c¢f a disk file in a subprocess
map also forces the block to be logically attached. An attach count
mechanism similar to the open count mechanism is employed for each
block to determine when a block can ke removed from the ECS incarnation
of the disk file.

when the wuser 1is through with a particular portion of a tile, the
block (s) can be "detached". The local attach count for each data biock
is reduced. If the local count becomes zero, the global count is
reduced. If the glcbal attach ccunt is exhausted, the block is removed
from ECS. Associated with each data block of an ECS file is a
"dirty-bit" which is set whenever the blecck is written into or placed
in a read-write map entry. If the dirty bit is not set, the block does
not need to be written back to the disk since it has not been modified;
it can simply be deleted. Otherwise, the block is moved to the holding
file and then copied to the first available position ou the disk.

3.1.5 Disk File Interlocks

The user may protect access to any particular file by other users using
mechanisms 1in the directory systen. He may also choose to share
particular file(s) with other selected wusers on a read-only or
read-write basis.

Although the open-clcse counters keep track of file usage, only the
special "exclusive open" action places any restrictions on the number
of users whc may open the same file for reading or writing at one time.
Thus it 1is ©possible fcr two or more processes to be writing into the
same portions of a file simultaneously, cbviously a precarious situa-
tion., To aid interprcoccess ccoperaticn, the disk system provides a

The CAL Time-Sharing System

May 1971 3.1 Files

completely voluntary claim wechanism. If a process wishes to coordin-
ate its use of a file with other [ossible simultaneous users it can
make a "claim™" on the file. 1If the user plans only to read the file,
he may make a shared claim. Mcre than one shared claim may be honored
at the same time. If, on the cther hand, the user wants to write on
the file, +the frocess should make an exclusive claim for the time
during which it will be altering the file. An exclusive claim will not
be honored until there are no other claimps in effect on the file and,
while an exclusive claim is in effect, no other claims, exclusive or
shared, may be honored for that file. A queue of claims waiting to be
honored 1is maintained on a first-come, first-served basis when claims
on a file ccme into conflict.

3.1.6_File Acgcounting

Charges fcr file usage are based on the amount of ECS and disk space
occupied by the portions created and/cr used. Parts of a file which
remain in ECS as long as the file is cpen, such as the description of
the file shape and the data blcck of a single level file, occupy fixed
ECS space. Data blocks of multi-level files which have been attached
by one or more prccesses occupy swapped ECS space. Even though several
processes may be using the same file, each is charged for the ECS space
occupied by the porticns it has attached and for the fixed ECS space.
The disk space occupied by a file is charged to the funding directory

(see Maccounting and allocation®) which 1s associated with the file at
the time cf the file creation. Temporary space occupied by data blocks
which have been written to the disk is nct charged to the tile. Also,

for open disk files, the amount of Disk System Storage used by the file
is regulated.

If a disk file is to be used by several processes, it may be "frozen".
When a preocess "freezes" a file, all existing file blocks are attached
and the ECS space occupied by the file is charged to the process.
Processes which open the file after it has been frozen are not charged
for any fixed or swaprped ECS space in connection with the file. Thus
commonly used files can be frozen so that only one process pays tor the
file space {(which is charged as fixed ECS space).

The CAL Time-Sharing Systenm

May 1971 3.4 Capabilities and C-lists

3.4 CAPABILITIES AND C-LISIS

3.4.1 Capabilities

Within CAL TSS objects are identified, and access to them authorized,
by means of capabilities. A capability identifies an object by
specifying the type of the object and providing a 60-bit datum which
unigquely identifies the item. The interpretation of the datum depends
on the type of the object. This 60 bit datum, used to 1identify the
object named by the capability, is called the "protected name". The
protected name along with the type are used to identify and access the
object referenced by the capability. The information content of the
protected name cannot be modified once it is set into a capability and
thus <can contain critical information, such as a pointer or a seguence
number, to be used in accessing or identifying the object. In sonme
cases, vwhen the object being named by the capability is very small, the
object 1itself may be stored in the protected name (e.g., class codes,
capability creating authorizations, and access keys). Each capability
also carries 42 "options", which are used to indicate the particular
kinds of access permitted to the object represented by the rest of the
capability. Fach option represents a specific operation that can be
performed on that object; for example, in a file «capability, optioans
are designated for reading, writing, deleting and other more obscure
operations on files., When a <capability is copied, options may be
turned off, thereby producing weaker capabilities (ones allowing fewer
operations) from stronger ones.

Each capability is two (60-bit) words locng. See Figure 1. The first
word contains the 18 bit type field and the 42 options. Objects which
are recognized by the ECS system and occupy space in ECS (i.e., files,
event channels, processes, C-lists, operations, and allocation blocks)
are identified in the second word of a capability by a unique name and
an index 1into the Master Object Table {MOT). All access to these ECS
system obijects is through the MOT, and 1includes checking the unigue
object identification (assigned when the object was created, and stored
in the MOT entry). Also contained in the MOT entry for an object is
the single pointer to the start of the object 1in ECS, which nmakes
possible the compaction of storage in ECS without the necessity of
updating capabilities referring to the objects. On every reference to
an object, the unique name assigned to the object is checked against
the unique name stored in the MOT. This scheme makes it possible to
destroy an object and re-use 1its MOT slot without locating and
invalidating all capabilities referencing the object.

The CAL Tiwe-Shariny Systenm

May 1971 3.4 Capabilities and C-lists
Figure 1
Capability
18
options' type

object identification

ECS system object identification

Master Object Table

capability
options type
unique name MOT 7
1 index

unigue name ECS addr

object in ECS

The CAL Time-Sharing Systen

May 1971 3.4 Capabilities and C-lists

3.4.2 Capability lists

Since capabilities are used to authorize access to objects within the
system, it 1is necessary that the user be prevented from fabricating
them without proper authority. To this end, capabilities are gathered
together into <Capability-lists (C-lists) which are themselves objects
within the system. A capability-list is a sequence of capability slots
which are indexed from 0 toc n-1 (where n is the length of the <(-list
and is fixed when the C-list is created). "Empty" capability slots are
represented by a pair of zero words. Capability lists may be thought
of as a peculiar sort of addressable memory which can be accessed only
through the systenm. To modify the contents of a C-list, there are
system functions which copy capabilities from one place to another,
clear a capability location, or return a capability for a new object.

To provide an initial set of capabilities for programs running on the
system, every process has a distinquished C-list called 1its working
C-list. A capability 1is referenced by specifying an entry in the
working C-list. 1If we let W denocte the working C-list, then W[1i]
denotes the capability in the 1i-th slot of W. Since C-lists are
objects which can themselves be named by capabilities, it 1is possible
to specify capabilities 1n more complex ways; e.g., WL i) j] would be
the j~-th entry of the C-1list named by the capability in the ji-th entry
of W.

In the interest of simplicity, all capabilities referenced as parame-
ters of operations are allowed to invcke only one level of indirection.
Thus, two formats are recognized for specifying capability parameters.

Direct capability reference:

59 17

| 2 | RJ) h .

10} i i | = W[i]

i iR 4 J

Indirect capabkility reference:

59 30

. | v 1 . .
11 i i i I = W[i][3]
| i ' |

By these mechanisms of capability referencing and modification, it is
clear that a capability (in a C-list) is the protected name of the
object it represents; while the direct or indirect reference (i.e., its
address in the C-list) is the unprotected name of the object named by
the capability. The integrity of the [protection system 1is assured

The CAL Time-Sharing Systen

May 1971 3.4 Capabilities and C-lists

because only capabilities reachable from the working C-list of a
process have unprotected names in that process, The fact that a
capability 1is 1in a process' working C-list is construed as evidence
that the process has the right to access the object mnamed by the
capability.

Since the presence of a capability in a C-list is interpreted by the
system as a-priori authorization to manipulate the object identitied
(named) by the second word of the capability, the user must never be
allowed to directly fabricate a capability and place that capability in
a C-list. Functicns within the system which "create" objects are
permitted to fabricate <capabilities for them and place them into
C-lists., Since the interpretation of the second word (identification
or protected name) of a capability is dependent upon the type of the
object, the injunction against fabricating capabilities can be relaxed
somewhat, 1In particular, the privilege cf fabricating capabilities for
a particular type of object could be authorized if the type were Kknown
to be different from any other type already being used.

By extending the number of types of objects in this way, a subsysten
may represent objects which it creates and maintains by capabilities
with an extended type. To achieve this flexibility and extendability
while retaining the protection and access-control features of capabili-
ties and C-lists, a new object 1is implemented 1in the basic {(ECS)
system. This object, called a Capability Creating Authorization (CCA),
is simply a protected name for the type which is being authorized. The
identification of the new type is carried in the second word of the
capability for the capability-creating authorization. The ECS systen,
when creating a new CCA, simply fabricates and returns a CCA capability
naming the next 18-bit integer satisfying the «contraints of a type
number,

The ECS system, when presented with a CCA capability and a 60-bit
datum, will fabricate and return a capability of the type named by the
CCA with the second word of the new capability set as specified by the
supplied 60-bit datum. Thus the new capability is the protected name
of whatever the identificaticn or naming portion of capabilities of
this type represent. This mapping (i.e., the meaning of the protected
name) presumably is applied by the subsystem which creates the extended
type capabilities.

The CAL Time~Sharing systen

May 1971 3.6 Event Channels

3.6.1 Description

Event channels are ECS objects wvwhich are used to synchronize the
behavior of —running processes as well as to implement "block" and
"wake-up" mechanisms. Events can be sent to or received from an event
channel. An event consists of two 60-bit words: the first identifies
the sending process or the sending channel while the second is a 6(0-bit
datum, presumably carrying information for the process which receives
it.

The event chapnel is composed of two queues, one for events waiting to
be picked up by some process and the other for processes which are
vaiting for an event to arrive. At least one of the queues is always
empty; either there are more processes requesting events than there are
events (event queue is empty), or more events have been sent to the
channel than there are processes requesting events (process queue is
emapty). Of course, the channel may be idle, and both queues will be
enpty. Since the event gqueue is stored in the event channel, it has a
maximum size which is specified when the event channel is created. The
length of the process queue, however, 1is unlimited since it is
maintained by means of a pointer chain through the processes in the
queue,

A user process can create an event channel, send an event to a
particular event channel, request an event from one event channel or a
set of them, and destroy an event channel. (See Event _Channel

Actions.) Event _Chann

3.6 Sending Evenats

When a user process sends an event, the event (event datum provided by
sender) is passed to the first process in the process queue if there is
a process waiting. In this case, the first waiting process is removed
froem the process queue, passed the event in X6 and X7, and scheduled to
run. If the process queue is empty, the event is placed in the event
queue if there is room, Should there be only one free slot in the
event queue when an event is sent, the intended event datum 1s replaced
by a special "you lose®" datum so that the process which eventually gets
the event will be aware that the event queue became full and that
information may have been lost., 1If the event queue is full, the event
cannot be sent. The system always returns a flag to the sending
process indicating the disposition of the event (i.e., event passed to
a waiting process, placed in event queue, "you lose" event placed 1in
event queue, or event gueue full).

The CAL Time~Sharing systen

May 1971 3.6 Event Channels

3:7.3 Getting Events

A user process may attempt to get an event from an event channel. When
an event is available, it is immediately delivered to the process in X6
and X7. If no event is available, the process may elect either to
"block® or to be notified immediately that the event queue is empty by
means of an P-return (see Section 3.3). If the process "blocks" (i.e.,
vishes to wait until an event arrives), it is added to the end of the
process queue of the event channel and "descheduled". The process will
not execute any more instructions until enough events have arrived oa
the event channel to bring the process to the head of the process
queue, A process vwaiting on the process queue of an event channel may
also be restarted by an "interrupt™ to the process which has sufficient
priority to pre—-empt the program which hung on the event channel (see
"interrupts®). The next event after the process becomes the head of
the event queue will cause the process to be scheduled to run, and the
event will be passed in X6 and X7.

A process may also try to get an event from one of a list of event
channels. The event channels are checked one at a time and the first
event froa the first non-empty event channel on the list is delivered
to the process in X6 and X7. If all of the channels are empty, the
process may elect either to be notified immediately by an F-return as
in the one channel case, or to wait for an event. In the latter case,
the process is quened on all the event channels on the list. The first
event to arrive on any one of the channels (vhich does not have earlier
processes waiting) is sent to the process, which is simultaneously
unqueued €from all the event channels.

The number of event channels which may be 1interrogated simultaneously
is 1limited by a parameter built into the system. It is further
restricted by a parameter supplied when the process is created.

The channel which delivers an event is identified in the first word of
the event. If the process receiving the event was hung on a list of
event channels, the ordinal of the sending channel is packed into the
scale. If the process was oaly hung on onme channel, it gets a 1 packed
in the scale.

3.6.4 Timed Event Channels

A set of special event chaanels, called clocked event channels, provide
facilities whereby a program may economically wait for varying periods
of time. Each of these channels is set for a specified trequency.
When one of them ticks, all processes hung on the channel receive an
event to activate them. (The event datum is the reading from the
master (micro-second) «clock at the time the tick occurred.) These
channels are iamplemented so that they tick on even multiples of the
time of day clock, vhich is entered by the operator when the systeus is

The CAL Time-Sharing systen

May 1971 3.6 Event Channels

initialized and kept by the display driver. Channels are provided
which tick whenever the time of day clock turns over to each even:

1/10 second
1 second

10 seconds
1 minute

10 minutes
1 hour

For instance when 10:00:00 turns over, all the channels tick but at
10:00:01 only the 1/10 second and one second channels tick; at 10:00:10
these two and the ten second event channel tick. There are two things
to note: First, in order to time something using these channels, one
must wait for an initial tick, and then hang again, or get the time and
date from the systeama and compute the interval until the next tick
should conme. Second, these channels run off of the real time clock,
vhich is entered by the operator. Consequently, whenever the time |is
entered, the next tick of each event channel will not be at the
expected interval from the previous tick.

328,55 Uses for Event Channels

Event channels may be used for such things as inter-locking two or more
processes, free list allocation, and sending messages. For example, 1if
the system has only one printer, only one user may access it at one
time. If access to the printer is governed by an event channel with
only one event, users wvwanting to print will try to get the event from
that channel. If some user already has the event, others must hang in
the process queue until the user is finished printing and sends the
event back to the event channel,

Free 1list allocation can be handled by an event channel if the single
event is a pointer to the head of the free space list in which the head
of each block of free space points in turn to the head of the anext
block of free space, When a process needs space, it gets the event
from the event channel, takes the pointer from the head of the list and
puts it into an event which it sends back to the channel; when 1t is
finished with +the space, it gets the event, places the pointer in the
event into the first word of the space being released, puts the address
of the first word of the space being released into the event, and sends
the event back to the channel.

Messages can be sent between processes via an event channel. The
message might consist of one or more events, 10 characters per event
with a special character to signal the end of the message. These
events are sent sequentially to the event channel, and, if the
receiving process is not waiting to get them, are stored in the event
queue., Note that it is vital to the proper function of this particular

The CAL Time-Sharing systen

May 1971 3.6 Event Channels

mechanism that only one process at a time be getting or sending events
from the channel.

May 1971

File Actions

The Time-Sharing Systenm
description
appears in Section 2.1.

files. A
actions:

Create
Create
Create
Create
Create
Delete
Delete
Delete
Delete

Move an FECS file block

a disk
an ECS
a disk
an ECS

file
file
file
file

provides

of

files

Time-Sharing Systen

4,1 Pile Actions

a number of actions

for

handling

and how they are handled under TSS

The following list summarizes

via directory system

data bhlock

disk file data blocks
a data block from an BCS file
a block from a disk file

an ECS
a disk

file
file

Open a disk file read-only {read/write)
Exclusively open a disk file
Close a disk file
Attach file block

Detach disk file blocks
Interchange file contents
files

Read (write)
Make an exclusive claim on a file

Make a shared claim on a file
Release claim on a file
Read shape of an

RCS file

Display disk file status
Nisplay status of n-th disk file
Display n-th attached block nf disk file

Check for
Check for
Close all
Set-reset

Test and reset dirty bit
Return disk subsystem clock

Detailed descriotions
description of how the user calls the system to initiate an action, sen

Section 3.5.

of

these

("shazam")

missing ECS data blocks ("probe")
missing disk file blocks

open files
close all over-ride

actions appear helow,

tha a

For a

vailable

general

Time~-Sharing Systen

May 1971 4.1 File Actions

4.1,1 Create Disk File via Directory System

{To be suprplied)

(3]

Time-Sharing System

May 1971 4,1 File Actions

4.1.2 Create_an_ECS _File (EC:CFIL)

IP1 C: Capability for allocation block (0OB,CRFIL)
IP2 D: C-list index to return capability

IP3 D: Number of levels in the file

IP4 D: Pointer to a list of shape numbers

When a file is created, only the file descriptor is constructed, The
file descriptor containg a pointer to the To0* of the file trea
{initially empty since no data or pointer blocks exist),. Tha user

supplies the capability of the allocation block which is to fund the
BCS space occupied by the file, The user must also supply the index of
the C-list slot where the system will put the capability for the newly
created file (all option bits in the capability for the new tile are
turned on). The 1last two parameters of the ¢file create action,
indicate the numher of 1levels {(n) contained in the structure of the
file tree, and a pointer to a list of n shape numbers (S1 through Sn),
the first n~1 of which indicate +the number of bhranches from each
pointer block at each successive level of the file tree; the last shape
number (Sn) gives the uniform size of all data blocks in the file. A
"one level file" (IP3=1) consists of a single data block of length S1.
Fach_shape number (S1 excepted) -

Possible errors while creating an ECS file:

Class Number Description

E.ABLOCK TF,NOABLK Allocation tlock does not exist

F.ABLOCK E.NOECS No ECS available

E.PARMS E.NEGIX C-list index is neqgative.

F.PARMS F.BIGTX C-1list index exceeds full C-list

F.PARMS E.NEGPT Pointer to 1list of shape aunmbhers 1is
negqative

E.PARMS E.NEGPAR Level number n < 1

E.PARMS F.BIGPAR Level number is too large or
Pointer to 1list of shape numbers plus
list length exceeds usaer's FL

E.OPER F.CAPTY Type or options bad

E.FTILES F.NEGSTZ Ncn-positive shape numbher

E.FTLES ®.BIGSTZ Shape numbers exceeds 217-1

E.FILF¥S F. NOTPOVW Shape number other than S1 not a power of
2

E.FILFES F.BIGFIL Total size of file exceeds 259-1

Time-Sharing Systen

May 1971 4,1 File Actions

4.17.3 Create a disk file 1 (DF:CFIL)

Input parameters:
IP1 D: Disk accounting record numbher
TP2 BD: Shape numbers S0 through Sn

Returned parameters:
RDAT™ : Disk unigue name, header block size, and disk address
{oneword)
RCAP : FCS file capability for new file

A file of the specified dimensions (see 'Create BCS file') is created
in both ECS and the disk system data structure. The resulting disk
fFile is opened for the creating process. The new file is associate”
with the disk accounting record specified by the first parameter (I21),
and this record must fund all permanent disk space occupied by the
file. Although space is reserved on the disk for the file header block
(see below), it is not copied to the disk until the file is closed.

For a disk file, the first level of pointers (or the data block in the
case of a one level file) 1is associated with the header bhlock of the
file (in contrast to the scheme for ECS files in which the file
descriptor and file root are separate). Thus, if the new file is a one
level file, the data block is funded and added to the ECS incarnation
of the file,

An RCS file <capability (with write access) together with the disk
uniqgque name and header block address are returned to the caller via the
return parameter mechanisms {see 3.,5). The ECS file capability has all
options set except for: 0B.DSTRY, 0OB.CHNAM, ©0B.CREBL, OB.DELBL,
OR.PLMAP, OB.FDA®E, and OB.TRDB. There are many restrictions on the
shape of a disk file, Considerations of efficiency and utility have
forced what mavy seem to be arbitrary limitations on the range of the
dimensions of a disk file.

Shape restrictions: one level files - data block size < 512 - U
multi-level files - number of levels < 11
data block size = 128 or 256 or
512
pointer block fan out 2> 8
< 128
= 2%x%n

{for some n)
first shape number (S1) £ 128
total length of file < 235 - 1

! Privileged operations are used by privileged system subprocesses and
are not allowed to be in user C-lists,

Time-Sharing Systen

May 1971 4.1 File Actions

Tn addition to errors which may be detected while processing the file
description, errors may be encountered in funding the newly created
file. Fixed ECS space is funded from the process allocation hlock: a
one-level file receives the data block size plus 4 words; a multi-level
file receives the sum of the number of levels plus the first shape
number plus four. Permanent disk space 1is funded from the Adisk
accounting record (IP1); a one-level file receives from 1 to 7 sectors
depending on the data block size, and a multi-level file receives one
sector. Fnough Disk System Data Storage (DDS) is reserved to pernmit
creating at least one block on the file. Additional DDS space may he
reserved by making the appropriate call upon the disk system.

Possible errors while creating a disk file:

Class Number Description
F.PARMS FE.NEGPAR Number of levels < 1
F.FILES E.LLEYV Number of levels too large
E.FILFS E.NEGSIZ Data block size negative or too small
(< 128) - multi-level file
Shape number too small (< R) - one level file
E.FILES F.BIGSIZ Data block too big {(multi-level > 512) (one-
level > 50R)
Shape numbher too hiqg (> 128)
E.FILES E.NOTPDOW Data block size or pointer block sizn
(multi-level file) not power of 2
F.FILES F.BIGFIL File too bhig (> 238 - 1)
F.FPTILES E.NOLFH Too many locally open files
E.PILRS E.FOLL Disk system tables full
F.ABLOCK F.NDABLK Disk accounting record does not exist
F.ABLOCK F. NOECS Not enough fixed ECS for file
E.ABLOCK FE.NODSK Not enough permanent disk space in
Jisk accounting record
T.ABLOCK F.NODDS Not enough DDS space

S

Time-Sharing Systen

May 197 4.1 File Actions

4.7.4 Create_an_ECS File_Data_Block {FC: CBRLK)

TP1 C: Capahility for file (OB.CRFBL)

IP2 D: Address of block in the file
Once an ECS file has been created, data blocks of the Adeclared length
{Sn) may be added subsequently, one at a time, to hold data or code. A

count of the subprocess map entries which reference the data bhlock is
maintained with each data block. (This count 1is important when
deleting a block - see below). To create a block, the user supplies a
capability for the file to which the block is heing added, and an
address which is contained in the block which is to he added to the
file.

When a data block is added to a file, it may also be necessary for the
system to create some or all of the pointer blocks between that data
block and the file descriptor. Recall that pointer blocks are requirei

to 1link the file descriptor to the data blocks in any file with more
than one shape number {i.e., not a one level file). All newly
allocated FCS space is charged to the allocation block associated with
the file,

Possible errors while creating a block:

Class Number Description

F.PARNS E.NEGIX C-list index 1is negative

F.PARMS E.BIGIX C-1list index exceeds funll C-list

E.PARNS E.NEGPT Address of new block is negative

F.PARNS F.BIGPT Address of new block > file length
(address range: O to lenqgth-1)

F.OPER E.CAPTY Type or options bad

E.FPILES FE.NOFTL File doces not exist

E.FTLES ¥. TSBLX Address of new block corresponds to an already
existing block

E.ABLOCK F.NQOFCS., No ECS space available

A

Time-Sharing Systen

May 1971 4.1 File Actions

4.1.5 Create disk file data_bhlocks {DF: CLBK)

TP1 C: ECS file capability for locally open disk file (NB.DCRABL)
IP2 D: Starting file address
TP3 D: Word count

Nata blocks may be added to any locally open disk file. The file to be
enlarged is specified by giving the FCS file capability (IPY) tor a
locally open disk file (i.e., a disk file which has been opened by the
calling process). More than one block may be added at once, Blocks
beginning with the one <containing the starting file address (TDP2)
through the one containing the starting address plus the word r~ount
(TP2 + TIP3) are created and attached to the calling process.

All new data blocks and any necessary new pointer hlocks are funded on
the disk by the disk accounting record associated with the disk file,
Disk srace for all data blocks 1s funded before any blocks are areated
{unused space is returned in case of an error). Swapped ECS space for
attaching the new data blocks is charged to the swapped ECS account of
the calling process., The actunal ECS file space occanied by the new
file blocks is absorbed by the disk svstem ECS allocation hlock,

The create disk file data block operation will agenerate an F-return 1if
the disk file to be enlarged is frozen, {i.e., all usage 1is bheing paid
for by a single user). On one-level disk files this action returns an
error after checking that the file addresses are in range. This 1is
because the data bhlock of a one-level file always exists and can
neither be created nor deleted, Frrors may occur after one or more
blocks have bheen createi, The file address of the first block not
created is added to the error number to indicate the state of the filn
when the error occuarred.

Possible errors while creating a disk file data block:

Class Number Description

F.PARMS E.NEGIX C-list index is negative

E.PARMS FE.BIGIX C-1list index exceeds full C-list

E.PARMS E.NEGPAR Negative starting file address or n=agative
word count

E.PARMS E.BIGPAR File address plus word count exceeds file
length

F.OPER E. CAPTY Type or options bad

F.FILES F.NODFTL No such disk file opened by this process

F.FTLES FE.DTOFRRRZ2 Frror on pointer block read from Aisk
{modifier = file address of first block not
created)

- —— - — -

2 Frror may occur after zero, on=2 or more blocks have been created.

Time-Sharing Systen

May 1971 4,1 Tile Actions
E.FILES E,TSBLK2 Data bhlock address already exists (modifier =
file address of block which exists)
F.FTLES E.NABR2 No attached bleck record, i.e., disk systen
out of local storage (modifier = file address
0of first block not created)
E.FILES E.ZLEV Attempt to add a block to a one-level file
F.ABLOCK E.NODSK Insufficient disk space to fund all data blocks
E.ABLOCK F,NOSWP Insufficient swapped ECS in process disk

accounting record.

Time-Sharina Systen

May 1971 4,1 File Actions

4.1.6 Delete _a_data block from an ECS_file (EC: DRLXK)

IP1 C: Capabilityvy for file (0OB.DELRL)
IP2 D: Address of block o he dAeleteqd

A block <can be deleted from a file as long as it is not reterenced bhy
an entry in some subprocess map (reference count = 0), The user nmust
supply the <capability 1index for the file and the address within the
file of the block which is to be deleted. If the bhlock 1is referenced
by a map entry, an error is issued,

Possible errors while deleting a data block from an ECS file:

Class Number Description

E.PARMS E.NEGIX C-1list is negative

F.PARMS E.BIGTIX C-1list index exceeds full C-list
E. PARMS E.NFGPAR Pointer is negative

*.PARMS E.BIGPAR Pointer is too large

E.OPER E.CAPTY Type or options bhad

F.FILRE E.NORBLK Block to be deleted does not exist
F.FILES E.TINMAPS BRlock to be deleted is in a map

Time-Sharing Systen

May 10 .1 ¥i1le Actions

4.1.7 Delete a block from a disk file (DF: DBLK)

IP1 C: ECS file capability for locally open disk file (OR.DDLBL)
IP2 D: Starting address in file
TIP3 D: Word count

Data blocks may be deleted from a locally open disk file. The file is
specified by giving the ECS file capability (IP1) for a locally open
1isk file. More than one block may he deleted at a time. Blocks are
Adestroyed beginning with the block containing the starting file address
{TP2) through the block containing the startinag address plus the word
count (IP2 + IP3).

Blocks may not be deleted from a file which is open by more than one
process. The blocks to bhe deleted wmay be either on the Adisk
(unattached) or 1in ECS. If in ECS, they must be attached only to the
calling process. Furthermore, they may not be in any maps.

The disk space occupied by the deleted data blocks is refunded to the
disk accounting record associated with the file. Space for any pointer
blocks which may become empty 1is not refunded until the ftile 1is
globally closed (no longer in use) or pseudo-closed (a technigque for
updating the disk version of a file). If some of the Adata blocks were
locally attached, swapped ECS space is refunded to the calling progranm.

The operation to delete disk file data blocks will F-return if the disk
file is frozen. This action returns an error on one-level disk files.
The data block of a one-level disk file always exists and can never be
deleted. An error may occur after one or more blocks have been
deleted, The file address of the first block not deleted is added to
the error number to facilitate error recovery.

Possible ercrors while deleting a block from a disk file:

Class Number Description

E.PARMS E.NEGIX C-list index is negative

E. PARMS E.BIGIX C-1list index exceeds full C-list

F.PARNMS F.NEGPAR Negative starting file address or nega-
tive word count

E.PARMS F. BRIGPAR File address plus word count exceeds file
length

FE.OPER E.CAPTY Type or options bad

E.PILFS F.NODFIL No such disk file open by calling process

R.FILES E.TMOPYN File is open by some other process

E.PILES F.DIOERR3 I/0 error reading pointer block (modifier
= file address of first block not
deleted)

E.FTILES F.NO3BLK3 Rlock to te Aeleted does not exist (modi-

fier = file address of first block which

10

May 1971
E.FILES F.TMGA3
E.FILES E.INMAPS3
E.FILFS F.ZLEV

3 Frror may ocrur after =zero,

Time~Sharing Systen

4,1 File Actions

does not exist)

BRlock 1is attached to another process
(modifier = file address of attached
block)

Block 1in some map in calling process

{nodifier = file address of block in map)
Attempt to delete data block of a one-
level file

one or more blocks have been deleted.

1M

Time-Sharina Systen

May 1971 4.1 Pile Actions

4.1.8 Delete _an ECS _file (EC:DFTIL)

IP1 C: Capability for ECS file (OR.DSTRY)
When an ECS file is deleted, it must not contain any data blocks, i.e.,
it must consist only of the file descriptor. Only the capability index
of the file is required as a parameter.

Possible errors while AdAeleting an ECS file:

Class Number Description

E.PARMS E.NEGIX C-list index 1is negative

F.PARMS E.BTGIX C-list index exceeds full c-1list
E.FILES E.NOFIL File to be deleted does not exist
E.FTLES F.NOTEMP File to be deleted is not empty
E.OPER FE.CAPTY Type or options bad

12

Time-Sharing Systen

May 1971 4.1 File Actions

4,1.9 Delete a Disk Pile {DF: DFIL)

IP1 C: Capability for a disk file (OB.DSTRY)

The disk file to bhe deleted must be locally open and it must not be
opened by any other process. Blocks may exist in the file and wmay be
attached but no block of the file may be in a man. If everything is
well, swapped and fixed ECS are immediately refunded to the local
accounting record. The disk space occupied by the file will be
refunded and the ECS incarnation of the file 1s destroyed by a parallel
process which will complete the file destruction.

Possible errors in deleting a Adisk file:

Class Number Description

F.OPER E.CAPTY Type or options bad

E.FTILPS F.NODFIL No such locally open disk file

E.FTILES E.TMOPN File is open in some other process
E.FILES E.INMADPS Block of file is in a map (modifier=file

adiress of offending block).

13

Time-Sharing Systen

May 1971 4.1 File Actions

4.1.10 Move_an_ECS File Block (EC: MRLK)

IP1 C: Capability for source file (0OB.RDFIL, OB, DELBYL)

ITP2 D: Address in source file of btlock to he moved

IP3 C: Capability for destination file (0OB.WFILE, OB.CRERL)
TP4 D: Address in destination file of block to be moved

File blocks can be transferred between FCS files whose data block sizes
{Sn) are equal. In addition to the capabilities for the source and
destination files, the system expects to receive from the user +the
address within the source file of the block to be moved and the address

in the destination

each block
moving it
when

within
a map,
problems
occur,
to the destination file,

file to which the block is heing moved.
suffices,

{which
swappings;
the designated block is deleted from the source file and
The contents of the block are not affecteld.

deletes it from the source
therefore

Any address
Tf the block tn be moved is referenced by
file) would cause
an error is issued. If no errors
added

Possible errors while moving a block:

Class Number Description

F.FILES E.NCBLK Block to be moved does not exist in
source file

E.FTLES FE.ISBLK A block already exists at the designated
address in the destination tile

E.FILES E.MISMCH Files dc not have egual data block sizes

E.FILFS F.INMAPS Block to be moved is in a map

F.PARMS E.NEGPT File address negative

F.PARMS F.BIGPT File address too large

F.PARMS E.NEGIX C-1list index is negative

F.PARMS F.BIGTX C-list index exceeds fnll C-list

E.OPER F.CAPTY Type or options bad

14

Time-Sharing Systenm

May 1971 4.1 File Actions

4.1.11 QOpen_a_disk file read-only (read/write) (DF:0PRO, DF:0OPRW)

Input parameter:
TPt C: Disk file capability ({(OB.OPEN (0OB.WFILR))

Returned parameter:
RCAP : FECS file capability for open disk file

Before a disk file <c¢can be manipulated, it must first be logically
opened. The open action returns an ECS file capability for the ECS
incarnation of the disk file. Almost all disk file operations require
this ECS file capability as a parameter. To facilitate file sharing, a
Aisk file may be opened by several processes and may be opened
repeatedly by a single process. A process local open count permits
repeated opening and closing by a single process without interferring
with the global open count, which reflects the number of separate
processes which have logically opened the file.

The disk file capability (IP1) contains the disk address and unique

identification for the disk file, The first time a disk file is
opened, the header block for the file must be read from the Aisk and an
FCS file created from the shape description contained therein. Suhse-~

quent opens return a capability for the ECS file created by the initial
npen without requiring a disk reference.

If the file has previously been "exclusively" opened, the open action
will FP-return.

TEf the file has not heen opened previously by the calling process, the
process 1s charged for the fixed FECS space required for the ECS file
descriptor and the first level of the file tree,. On the disk, the
first 1level of the file is stored in the header block of the file and
must be brought to FCS when the file is opened. TIf the file is £rozen
or 1s already open in the calling process, no charge is made for fixed
FCS space. Fixed =CS space is fuanded by the process allocation block;
a one-level file must pay for space e2qual to the data block size plus
four; a multi-level file pays for space equal to the number ot Llavels
plus the number of branches from the first level {S1) plus four. Tn
addition, sufficient DDS space ({(disk system global storage) is raserved
to allow the attaching of any one file block. Additional DDS space may
he reserved explicitly or auntomatically as needed,

An ECS file capability, with or withont write access, 1s returned
depending on whether the open read only or open read/write operation
was called for. The "open read/write" oreration requires an additional
option bit (NB.WFILE) in the disk file capability (IP1) %o satisty the
FCS system parameter checking. "Open read/write'" returns extra options
0B, WFILFR, 0OB,DCRBL, and OB.DDLBL, 1In all cases, the option bits of the
ECS file capability are ANDed with the option bits of the user supplied
Aisk file capability (IP1) befora the ECS file capability is returneid

15

May 1971

to the caller.
file capability
0B.DELBL,

0B.DSTRY
0OB.CHNAM
0B.CREBL
0B, DELBL
OB. FDAE

OB.PLMAP
OB. TRDB

Class

E.PARMS
E.PARMS
E.FILES

E.FILES

E.FILES
F.FILFES
F.OPER
E.ABLOCK
F.ABLOCK

OR.PLMAP,

Time-Sharing Systemn

4,1 File Actions

Finally the following options are turned off in the FCS

Prohibited options are:

F-return condition:

Number

E.NEGIX
F.BIGIX
E.NOFIL

E.TMOPN

E.NOLFH
B.FULL

F.CAPTY
F.NOECS
E.NODDS

which
OB, FDAE,

returned: OR.DSTRY, OB.CHNA™M, OB.CREBL,
and CB.TRDR,

Destroy a file

Change nnique name
Create a block

Delete a block

Direct RCS access

Place in subprocess map
Test and reset dirty bhit

file is "exclusively" open already.

Possible errors while opening a disk file:

Description

C-1list index is negative

C-1list index exceeds fnll C-list

No such disk file or

Disk parity error on header block
Too many opens (local open count >
218~1 or global open count > 218-1)
Too many locally open files (> 25)
Disk system tables full

Type or options bhad

Tnsufficient tixed FCS to open file
Insufficient DDS space

16

Time-Sharing Systen

May 1971 4,1 File Actions

4.1.12 Exclusively open _a_idisk file {DF:XOPN)

Input parameter:
TP1 C: Disk file capability

Retiurned parameter:

RCAP: ECS file capability for open disk file
Tn order to provide enforced exclusive access +to a disk file +to
alleviate some problems surrounding those disk system actions which

{delete file and 1interchange

________ This action, if it succeeds,
will prevent any subsequent opens on the file. The exclusive open will
fail 1if the file is already exclusively opened or if any other process
currently has the file open., Tf the evclusive open succeeds, 1t will
perform all the activities normally associated with an open of a file
file (see Mopen disk file"),. The file 1is aAautomatically opened
read/vwrite.

require that the file not be shared

P-return condition: file

another process.

already exclusively open or file open by

Possible errors while exclusively opening a disk file:

Class Number Description
F.PARMS E.NEGIX C-list index is negative
F.PARMS R.BIGIX C-1list index exceeds full C-1list
R.FTILES E.NOFIL No such disk file or
Disk parity error on header block
E.FILES E.FULL Disk system tables full
F.OPER E.CAPTY Type of options bad
E.ABLOCK E,NOECS Tnsufticient fixed ECS to open file
F.ABLOCCK FE.NODNDDS Insufficient ND5 space

17

Time-Sharing Systen

May 1971 4,1 File Actions

4.1.13 Close_a_disk _file (DF:CLO - ECS file capability)
({DF:CLOS - Disk file capability)

IPY C: ECS file capability (or disk file capability) for locally
open disk file (0OB.CLOSF)

A disk file should be closed when a process is through manipulating it.
Tf the <calling process is the only rprocess to have opened the file, a
close will cause the contents of the file on the disk to be npdated to
reflect all <changes in the file content and size. Should the systenm
crash after a successfully completed <close, it 1is unlikely that
information in or about the file will be lost. On the other hand, as
long as the file remains open by some process, all changes made since
the file was first opened may be lost in the event of a crash.

As mentioned above, a process local open count records multiple opens
by a single process. If a close decrements the open count to zero, any
blocks of the file which are attached to the process are detached, and
the swapped FCS space is refunded to the process. Fixed FCS space 1is
also refunded, unless the file was frozen when the process opened it.

Tf the local open count becomes zero, any local claims on the tile are
released and the global open count is decremented, When the globhal
open count becomes zero, a request is sent to a special disk system
process which will update the contents of the file on the disk. The
update is carried on sirultaneously with the execution of the process
requesting the close file action. The updating of the file on the disk
consists of re-writing any pointer blocks which point directly or
indirectly to data blocks which have been modified and written to new
locations on the disk, After all pointer blocks have been written, the
root level pointers are re-written with the file header at their old
address on the disk., In this way, the o0l1ld contents of the file will
not he lost if the system should crash bhefore the update procedure 13
complete,

Possible errors while closing a dAisk file:

Class Sumber Description

F.TARHMS R.NFERIX C~1list index is negative

F.PARMS F.BIARTY C=-1list index exceeds full C-1list
FLOPER FoeCAPTY Type or options had

F,FILRS R, NODTTL No such locallv open file

E.FILFES . INMAPS Attached block in a map {(modifier

file address of hlock in map)

Time-Sharing Systenr

May 1971 4.1 File Actions

4.1.14 Attach file block(s) {(DFz ATCH)

IPY C: ECS file capability for a locally open 4disk file (?)
IP2 D: Starting address in file
IP3Y D: Word count

Data blocks of a disk file may be attached by a process., Attaching a
data block will cause the block to he held in RCS until the block is
detached. Tf the data block is not already attached, a disk read is
initiated to bring the block from the disk. However, the process does
not wait for the block to arrive from the disk. Since several
processes may share a file and attach the same bhlock, a global
attachment count is maintained for disk file data blocks. TIf the block
being attached is already in ECS bty virtue of bheing attached by some
other process, no disk read need be initiated., To permit multiple
attaches by a single process, a local attachment count is used to
prevent one user from over-riding the attaches of another user. Tnless
the file (IPY) is "frozen", the user is charged for swapped FCS space
for each block which was not previously locally attached.

Several data blocks may be attached by one call to the disk =systen,
A1l data blocks from the block containing the starting file address
(IP2) through the data block containing the starting file address plus
the word count (IP? + TP3) are attached, If IP1 is a one level tile,
only parameter checking is performed, since the first level of a disk
file is bruught to ECS (i.e., attached) when the file is opened.

Frrors may occur in the process of attaching a sequence of data hlocks.
If ¢the problem is a non-existant block, an F-return is made to the
caller. The address of the missing data block 1s returned in Y6, On
all other errors, the file address of the block causing the error will
be added to the error number. All blccks preceding the error block
will already be attached.

Possible errors on attaching file block(s):

Class Number Description

F.PARMS F.NTIGIX C-1list index is negative

F.PARMS E.BIGTIX C~ list index exceeds full C-list

F.PARMS E.NEGPAR Negative starting file address or nega-
tive word count

E.PARMS E.BTIGPAR Starting file address plus word count too
big

F.OPER F.CAPTY Type or options bad

E.FILES F.NABR* No attached block records {disk systen
out of local storage) (modifier = tile
address of last block attached)

F.FTLES E.TMA® Too many local attaches (> 212 - 1
{nodifier = file address of last hlock

10

May 191

E.FILES F.TMGA*
E.FILES F.DTORRR*

F.ABLOCK F.NOSWP

E.ABLOCK E.NODDS

- - - - —— - —_—

4 May occnur after zero,

Time~Sharing Systen

4.7 File Actions

attached)
Too many global attaches (> 28 - 1)
Disk I/0 error (modifier = file address

of last bhlock attached)
Tnsufficient swapped ECS in process disk

accounting recori
out of DDS space

or more blocks are attachei.

20

Time-Sharing Systenm

May 1971 4.1 Tile Actions

4.1.15 Detach Disk File_ Blocks (DF: DTCH)

TP1 C: ECS file capability for a Starting file address
IP? D: Starting file address locally open disk file (NB.)
IP3 D: Word count

When portions of a disk file are no 1longer needed 1in ECS, the
corresponding blocks of the file should be detached. Tn detaching a
disk file block, the local attachment count 1is decremented,. It the
local attachment count goes to zero, the global attachment count for
the block is decremented. TIf the global count becomes zero, the block
is removed from the ECS incarnation of the disk file. Tf the block is
clean (i.e., the dirty bit on the ECS file block is not set), the bhlock
does not need to be written to the disk. Otherwise, the block 1is
written to the first available position on the disk. The newly written
block will not be linked (on the disk) to its file header until a clos2
or pseudo-close is performed on the file,

Tnless

the file

is frozen,
hlocks for which the local attachment count has become zero. As with

swapped FECS space will be refnnded on all

"attach", more than one block may be detached by a single call on the
Aisk subsystem. Also, errors may occur after one or more blocks have
detached. In this case, the file address ot the offending bhlock

is added to the

Possihle errors

error number.

while detaching a file:

Class Number Description

E.PARMS E.NEGIX C-list index is negative

FE.PARMS F.BIGIX C-list index exceeds full C-list

E.PARMS E.NEGPAR Negative starting file address or
Negative word count

E.PARMS F.BIGPAR Starting file address plus word rcount too
big

¥.OPER E.CAPTY Type or options bad

E.FILES E.NATH Block not locally attached {modifier =
file address of block)

E.FILES F.DIOERR Disk I/0 error on block (modifier = file
address of block)

F.FILES E.TMD Too many detaches (block is 1in a map andi

non-map attach count already zero) ({(modi-
fier = file address of block)

21

Time-Sharing Systenm

May 1971 4.1 Pile Actions

4.17.16 Interchange file contents ("shazan™ (DF: SHAZ)

IP1 C: FCS file capability for primary file (0OB.DCRBL, 03.PDLBL)
TP2 C: ECS file capability for seccndary file (OB.DCRBL,0B.DDLRL)

Tt 1is ©possible to interchange the contents of two disk files without
copying data from one file to the other. Whenever one files is
considered to be the "backup" version cof another file containing the
updated version of the file, the file interchange action may be used to
securely update the backup file, The file interchange is performed by
first wupdating the <contents of both €files on the Aisk and then
interchanging the root pointers of the two files in ECS and on the
disk. The order of disk writes is such that the secondary tile header
is clobbered first. Then the primary file is updated to contain the
former contents of the secondary tile. Finally, the secondary tile
header is updated on the disk to point to what was formerly the
contents of the primary file. This algorithm guarantees that a systen
failure at any point will leave the primary file either unchanged or
containing the contents of the secondary file. The secondary file will
be 1) unchanged, 2) gone, or 3) will contain the previous contents of
the primary file. After the interchange, all blocks of hoth files will
be "dAetached" {i.e., on the disk).

In order to interchange two files, several conditions must be nmet.
Both files must be locally open and must not be opened by any other
process. No bhlock of either file may he in a map and the accounting
record of the smaller file must fund the increase in file size. The
accounting record of the larger file will be refunded an aAappropriate
amount of space. One level files cannot participate in a file
interchange,

Possible errors while interchanging file contents:

Class Number Description

E.OPFPR E.CAPTY Type or options bad

R.PARMS E.NEGIY C~-list index 1s negative

E.PARMS E.BIGTX C-list index exceeds full C-1list

E.FPTLFS F.NODFIY, File not locally open disk file {(modifier=1 if
secondary file; 0 if primary file)

E.FILES E.INMAPS Block 1in a map (modifier=file address of
offending bhleck)

E.FTLES E. TMOPN File is open in another process (modifier=1 if
secondary file; 0 if primary file)

E.FILES F.ZLEV File 1is one level file {(modifier=1 if secon-
dary file; 0 if primary file)

F.ALLOC E.NODSK Tnsufficient 4isk space 1in file accounting
record

Time-Sharing Systen

May 1971 4,7 File Actions

4.1.17 Read_(write) file (EC:READ, EC:WRITE)

TP1 C: Capability for file (OB.RDFIL, (0OB.WFILF))
IP2 D: Address in file

IP3 D: Address in Central Memory

IP4 D: Count of words to be transferred

The action of reading (writing) an FCS file transfers words between the
address space of the running (current) subprocess and the data blocks
of a file. 1In addition to the capability index for the file, the user
specifies the address in the file of (for) the desired intormation, tha
address in Central Memory of the area to be read into (written fronm),
and the number of words that are to be read {written)y. If a transfer
is requested which involves a file address corresponding to a non-
present data hlock, the transfer proceeds until the non-present file
address is encountered, whereupon F-return action passes control to the
disk system. The disk system will check to see if the file (IP1) is a
locally open disk file, If not, an F-return will again be 1initiated
(see "Process control" and "Nperations"), If the file is a disk file,
the missing blocks will be fetched from the disk, the transfer
performed, and the blocks released or returned to the disk. If a block
which does not exist in the disk version of the file is encountered, an
F-return is initiated,

Possible errors while reading (writing) a file:

Class Number Description

E.PARMS E.NEGIX C-list index is negative

F.PARMS E.RIGIX C-list index exceeds full C-list

F.PARMS E.NEGPAR Word count negative

F.PARMS E.NEGDPT File address negative or
CM address negative

E.PARMS FE.BTIGPAR File address plus word count (IP2 + TP4)
exceeds file length or
CMm address plus word count {IP3+7PW)
exceeds user's field length

E.NOPFR E.CAPTY Type or options bad

23

Time-Sharing System

May 1971 4.1 File Actions

4.1.18 Make_an_exclusive claim_on a _file (with or without wait)
{DF:ECLM) (with wait)
(DF: ECLF) (without wait)

IP1 C: FCS file capability for a locally open disk file (0OB,FCLM)

An exclusive claim may be honored only when no other claim (exclusive
or shared) has bheen issued for the file in question. Tf the "clainm
without wait" call is used, an immediate F-return is passed to the user
if the claim cannot be satisfied immediately. TIf the "claim with wait"®
call 1is used, the process is added to the end of the claim wait queue
for the file (IP1) if the claim cannot be satisfied immediately. This
queue 1is used to keep track of claims which cannot be honored due to
outstanding claims on the file, Whenever a claim 1is released (see
below), the claim wait queue is checked., If non-empty, either a single
exclusive claim is honored from the head of the queune provided no other
claims exist on the file, or a sequence of shared claims is processed
from the beginning of the queue, To avoid locking up a user process in
the disk system, a time limit is enforced in the claim wait queue. If
a claim cannot be satisfied after a wait of one to two minutes in the
queue, the user is removed from the gqueue and an F-return 1is returned
to the caller. Finally, the claim mechanisms permit only one claim per
user., Any attempt by a single user tc make more than one claim on a
single file will cause an error to be returned.

Possible errors while making an exclusive claim:

Class Number Description

F.PARMS E.NEGIX C-1list index negative

E.PARMS E.BIGIX C-1ist index too large

E.NPER ®.CAPTY Type or options bhad

E.FILES E.NOFIL No such open disk file
E.FILES E.EXCLAM Local exclusive claim already
E.FILES E.SHCLAM Local shared claim already

24

honored,
passed an
or no wait).

1971

4.1.19 Make

Time-Sharing Systen

4.1 Pi1le Actions

a_shared claim on a file {(with or without wait) (DF:SCLM)

IP1 C:

Tf the file
process is

F.FILES
E.FTLES
E.FILES

Number
F.NEGIX
E.BIGIX
F.CAPTY
F.NODFTL
F.EXCLAM
F.SHCLAM

(DF: SCLF)

ECS file capability for a locally open disk (0B,SCLM)

is not exclusively claimed by some other process and no

waiting for an exclusive claim, a shared claim is honored,
Note that the shared claim can be honored for several processes and has
the effect of preventing an exclusive claim. TIf the <claim cannot bhe
the user is either added to the end of the claim wait queue or
immediate F-return, depending on the type of the call {wait
{See above,)

Possible errors while make a shared claim:

Description

C-list index negative

C-list index too large

Type or options bad

No such open disk file

Local exclusive claim already
Local shared claim already

Time~-Sharing Systen

May 1971 4.1 File Actions

4,1,2C Release claim on _a file (DF: RLSE)

IP1 C: ECS file capability for a lccally open disk file (OR.RFL)

Tf there is a claim (shared or exclusive) on the file by the
process, the

calling
file's claim status is updated to reflect the relsase of

the claim, If the claim was an exclusive claim or the 1last shared
claim on the file, the claim wait gqueus 1s processed. FEither one
exclusive claimer or a sequence of shared claimers (whichever occurs

first) are activated from the claim wait quene.

Possible errors while releasing a clainm:

Class Number Description

E.PARMS E.NEGIX C-list index negative
E.PARMS E.BIGIX C-list index too large
E.OPER F.CAPTY Type or options bhad
E.FILES F.NODFIL No such open disk file
E.FILFES F.NOCLAM No local claim exists

26

May

1971

4.1.21 Read _shape of an_ ECS file

The

(S1,52,...,5n),

tree at each

IP1 C: Capability for file
Address of buffer for the
Buffer size

IP?2 D=
TIP3 D:

shape

specifying

wants to read,

numbers.
the buffer and

of

succeeding

words
numbers have been passed.

a file 1is described

Possible errors while

I}

:lass
E.FILES

E.PARMS
E.PARMS
FE.PARMS
E.PARMS
E.PARMS

F.OPER

Number
F.NOFIL

E.NFGTX
E.BIGIYX
F.NEGPT
E.NEGPAR
E.BIGPAR

E. CAPTY

shape

until either

each of which is the
node of level i (1 <
non-negative power of two.
the index
and the address and size of a
The number of levels in the file is placed in the first worAd
numhers
the

The user
the

reading shape:

. o

File whose shape is to be read

exist

C-list
C-list
Ruffer
Bunffer
Buf fer

Time-Sharing Systen

4,17 File Actions

(EC: RSHP)

shape numbers

by a sequence of positive 1nteqgers
number of branches in +he ftile
i € n. Fach Si (i > 1) must bhe 23
can cbtain these shape numbhers by

capability for the file whose shape he

buffer for the shape

(S1,...,5n) are placed in
buffer is full or all the shape

does not

index negative

index exceeds full C-list
address 1s negative

size £ O

address plus size exceeds user's

field length
Type or options bad

27

Time-Sharing Systen

May 1971 4.1 Pile Actions

4.1.22 Display disk file status (DF: DSF)

Input parameter
TP1 D: FCS file unique name (left Justified)
Returned parameter
RDAT: ECS file unique name, FHR, and LFH (11 words)
The indicated file is located and the ECS file unique name, the file
header record, and the local file header are returned to the caller,

The format of the returned data is indicated in the figqure.

Possible errors while displaying disk file status:

Class Number Description
E,FILFS F.NODFIL No such locally open file
. Return parameter with errors

28

Time-Sharing Systen

May 1971 4.1 File Actions

4.1.23 Display status_of n-th disk file {DF: DSFY)

-

Input parameter
TP1 D: Local index of file to display
Returned parameter
RDAT: ECS file unique name, FHR, and LFH (11 words)

The date is returned as with "display disk file status", Tf the number
0of locally open files is less than TP1, an F-return is initiated.

Possible errors while displaying status of n-th disk file:
Class Numher Description

s i e g e e e e e o e i e S

E.PARMS F.NEGPAR IPp1 £ 0

29

Time~Sharing Systemn

May 1971 4.1 Pile Actions

4.1.24 Display n-th attached block of disk file

Tnput parameters

IPT D: ECS file wunigue name (left justified)
IP2 D: index of hlock to display

Returned parameter:
RDAT: Attached block record (2 words)
The IP2-th attached block record of the file 1indicated by 7IP1 1is
returned to the caller. TIf there are fewer attached block records than

IP2, an F-return is initiated.

Possible errors while displaying n-th attached block of disk file:

Class Number Description
F.FILES FE.NODFIL No such open disk file
E.NEGPAR E,PARMS Ip2 £ 0O

FILE ///,

May 1971

LOCK

7

1

1

i

4 + 4+ 4
[capued] |23 S0 R r
= Q SR
- o Ay
O %FHO

M ED
dl\l Z]
BN B3F
- ‘»ng
w5 a
gm

P}

H

<

[=]

DATA RETURNED BY DISPLAY FILE

CLOSE-ALL OVERRIDE

iiq;-l FROZ IT
SHARED CLAIM

————EXCLUSIVE CLAIM

'FROZEN
DATA RETURNED BY DISPLAY FILE BLOCK
MAP ATTACH | REG ATTACH| ATTACHED BLOCK | DDR ADDR FOR
COUNT COUNT LIST LINK POINTER FOR THIS
BLOCK-

|

L)

FILE ADDRESS OF THIS BLOCK

Time-Sharing Systenm

DF :DFHR
4,1 Film Actions
54 36 18 ~
N v N '
ECS FILE UNIQUE NAME ECS FILE UNIQUE
NAME
~HEADER BLOCK SIZE
\
DISK FILE UNIQUE NAME DISK ADDRESS
N
DDS ADDR OF DDS HASH TABLE SUSPENSE
FUNDING DAR LINK LIST HEAD
FROZEN OPEN TOTAL OPEN DDS RESERVE | 'FILCL' INDEX
COUNT COUNT | oF Ecs FILE
«| NUMBER OF DATA | FIXED ECS SPACE | DISK SPACE
J BLOCKS TO OPEN OCCUPIED _
S (SECTORS) L FILE HEADER
CLAIM CLAIM QUEUE CLAIM QUEUE RECORD (FHR)
COUNTER HEAD TAIL
MEMBERSHIP UNIQUE NAME OF
NAME /éjj FUNDING DAR
_ gl
SHAPE WORD
ROOT POINTER L. = log. S,
i 2 i
lst SHAP l n
—0- . L, {L,|L, |L *DIST=IL
NUM (S.)X DI 0-L . 4173172 |1 '
(Oq ST n[/ j_:ll
(i.e. number of
?/ bits to right of
DDS ADDR OF FILE S in file address
ECS FILE UNIQUE NAMF %2; HEADER RECORD \ 59
NUMBER OF BLOCKS | LOCAL OPEN ATTACHED BLOCK LOCAL FILE HEADER
ATTACHED COUNT QUEUE HEAD (LFH)

ATTACHED BLOCK
RECORD (ABR)

31

Time-Sharing Systen

May 1971 4,1 Pile Actions

4.1.25 Check_for missing ECS_data blocks_ ("proben) {EC: PRNR)

IP1 C: Capability for ECS file
IP2 D: Address of block in the file

This action allows the user to check for the presence of a d4ata block.
The parameters required are the index of the capability for the file to
which the block belongs, and the address within the file where the
block 1is supposed to be located, The number of missing levels in the
path from the root of the file tree to that vparticular block 1is
returned 1in register ¥6. Thus, if the block is present, XA <~ 0; if
the n level file is empty, X6 <- n; and if only the data block |is
missing (its pointer block is present), ¥k <~ 1,

Possible errors while checking for missing blocks:

Class Number Description

E.FILES F.NOFIL The file does not exist

E.OPER E.CAPTY Type or options had

F.PARNS E.NEGIX C-list index is negative

E.PARMS F.BIGIX C-list index exceeds full C-list
E.PARMS E.NFGPAR The address of the block is negative
E.PARMS E.BIGPAR The address of the block i1s too large

32

Time-Sharing Svaten

May 1971 4,1 *ile Actions

4.1.26 Check for missing disk _file blccks ("probe%) {DF: PROB)

TP1 C: ECS file capability for a locally open disk file
IP? D: Address of a block in the file

The existence of data blocks and pcinter blocks in disk files can he
checked with this action., The result is returned in register Y6 and 1s
interpreted the same as for the "probe" of an FRCS file, The first
leval of a disk file always exists, and thus the empty n-level disk
file would return X6 = n-1 for all file addresses., Disk file ‘'prohe"
may indicate fewer missing levels than there really are if blocks have
heen deleted since the last "close" or "pseudo-close of the file. An
I1/0 error on a data or pointer block is treated as 1f the block were
missing from the file.

Possible errors during a disk file blcck probhe:

Class Number Description

E.PARMS E.NEGIX C-list index is negative

E.PARMS E.BIGIX C-1list index exceeds full C-list
E.OPFR E.CAPTY Type or options bad

E.FTLES E.NODFIL No such locally open file
E.FILES E.BIGPA®R File address too big

E.PILES FE.NEGPAR File address negative

34

Time-Sharing System

May 1971 4,1 File Actions

4.1.27 Close all open fileg S (DF: CAOF)

No inrut parameters
This action closes all 1locally open files which do not have the
close-all-over-ride flag set., Tt is to be used primarily to clean up
the user process between major job steps or after things have qgotten
fouled up. The action will abort if a block is in the map of some file
which 1is being closed.
Possible errors while closing all open files:

Class Number Description

F.FILES F.INMAPS Some block of some file is in a man (file
address added to error number)

S Privileged operation.

30

Time~-Sharing System

May 1971 4,1 File Actions

4.1.28 Set/reset _close_all over-ride_ 3 {(DF: CFLG)

Input parameters:

TP1 Cz: ECS file capability for an open disk file
IP2 N: 7Zero for reset; non-zeroc for set

Returned parameter:
RDA™: {1y old value of over-ride flagq

The setting of the flag which over-rides the close-all action is
contrllled by this action. PFor a file to remain open through tha
close~all action, the over-ride flag must he set, TIf TP2 is zero, the
over-ride flag is reset. Otherwise, the over-ride flag 1is set to
prevent the file from being closed by the "close-all open files"
action.

Possible errors while setting-resetting close-all over-ride:

Class Number Description

E.FILFES E.NODPIL No such locally open disk file
E.PARMS E.NEGIX C-1list index is negative

F.PARMS F.BTIGIX C-list index exceeds full C-list
E.OPER F.CAPTY Type or options bad

v — - ——— i — . — ——— _— ——

S Privileged operation.

35

Time-Sharing Systen

May 1971 4.1 File Actions

4.1.29 Test_and reset dirty bit & (FC: ™2DR)

IP? C: Capability for file (0OB.TRLB)
IP2 D: Any address within block to ke tested

Returns 0 in XA if the block was clean. Returns 1 in Y6 1if the
block was dirtyv. F-returns if specified block does not exist.

4 bit on each data block of a file is used to tell whether or not the
block has been written in since it was last tested. A complete
description of the logic controlling the bit is

1. Data blocks are created clean.
2. Blocks are dirtied by:
a. file writes to any part of the hlock, including writes
with a word count of 0;
b. being put in a map R/W;
c. being put in a DAE map entry
3. Move block carries the dirty bit along with the bhlock.
4, Test and reset leaves the block clean.

Possible errors while testing and resetting dirty bit:

Class Number Description

E.FILES E.NODFIL, File does not exist

F.PARMS E.NEGPAR File address negative

F.PARMS E.BIGPAR File address too large

E.PARMS E.NEGIX C-list index negative

FE.DPARMS E.BYIGIX C-list index exceeds full C-list
F.OPER F.CAPTY Type or options bhad

6 Privileged operation.

34

Time-Sharing Systonm

May 1971 4,1 Tile Actions

4.1.30 Return disk_subsystem clocks (DF:CLKS)

No input parameters
Returned parameters:

RDAT 0: system time
1: swap tinme
2: disk sys time
The cumunlative time expended by the disk subsystem action 1is returned
to the caller.

37

The CAL Time-Sharing Systenm

May 1971 4.4 C-list Actioans

4.4 C-LIST ACTIONS

Create a C-list

Display a Capability from the Full C-list

Copy a Capability within Full C-1list and Decrease the Options

Copy Capability from Full C-1list to Arbitrary C-list
vice-versa)

Change Unigque Name

Zero a Capability

Create a Capability Creating Authorization

Create a Capability of Authorized Type

Destroy a C-list

{and

4. 4.1 Create_a C-1list (EC: CCL)

IP1 C: Capability for allocation blecck (OB.CRECL)
IP2 D: Index in full C-list to return new capability
IP3 D: Length of new C-list

A capability 1list (C-list) is a sequence of capabilities and "empty"
positions., Upon creation each C-list is filled with T"empties" (zero
words). To create a capability list, the user must supply the index of
the Allocation block which funds the space occupied by the C-list
{IP1). In addition to the length of the new C-list (IP3), the user
must supply an index in the full C-list for the capability for the new
C-list (IF2).

Possible errors while creating a C-list:

Class Number Description

F.ABLOCK E.NOABLK Allocation block does not exist

E.ABLCCK E.NOECS No ECS available

E.PARMS E.NEGIX C-list index 1is negative

E.PARMS E.BIGIX C-list index exceeds full C-1list

F.PARMS E.NEGPAR Length of new C—-list < 0

E.PARMS E.BIGPAR Length of new C-list exceeds core buffer area

The CAL Time-Sharing Systen

May 1971 4,4 C~list Actions

4.4.2 Display a Capability from_the Full C-list (EC: DSCP)

IP1 C: Index in full C-list

d#hen referring to capabilities within the full C-list, the <capability
index used 1is interpreted as if the C-lists in the full C-list vere
joined to form one 1long C-list. Thus, the index of the desired
capability (IP1) is all that is required to display it. The two words
of the capability are returned in X6 and X7.

59 17 0
T R h
X6 = | option mask] type |
1 A E]
59 0
T A
X7 = | object identification i
L 3

The following objects may be specified by the type field:

Object Iype Numkber
A.K. 273781
Allccation Blcck 1767B
CCA 17738
Class Code 17378
C-list 137178
Directory 177681
Disk File 177581
ECs file 15778
Event Channel 17578
Name tag: Dynamic 2677B1
Static 2571781
Operation 16778
Subsystenm 2377B1

Possible errors while displaying a capability:

System Entry/Fxit Errors only.

—— s — i 22t oo oD b o b

1 Subject to change.

The CAL Time~Sharing Systenm

May 1971 4.4 C-list Actions

——— e e s oo

(EC: MCAP)

IP1 C: 1Index of desired capability

IP2 D: 1Index of destination C-list entry

IP3 D: Mask of opticns to preserve (in bottom 42 bits - top 18
ignored)

The user can copy a capability from one location in the full C-list to
another and in doing so may decrease the number of allowed options.
Recall that when an object is created, a capability is returned which
has all the option bits (the high order 42 bits of the first word) set.
The user must indicate the C-1list index of the capability he wishes to
copy {IP1), the <C-list 1index where the altered capability will be
placed (IP2), and a bit-mask which will first be logically shifted, and
then "ANDed" with the option bits of the original capability (IP3) to
produce the option mask for the new version of the capability.

Possible errors while copying a C-list and decreasing the options:

Class Numkber Description

E.PARMS F.NEGIX Index of desired capability is negative
E.PARMS E.NEGIX Index of destination C-list entry is negative
E.PARMS E. BIGIX Index of desired capability is too large
E.PARMS E.BIGIX Index of destination C-list entry too large

The CAL Time-Sharing Systenm

May 1971 4.4 C-list Actions

4,4.4 Copy Capability from Full C-list to Arbitrary C-list_(and
vice-versa {EC:CIN, EC:COUT)

e e i - e i e

IP1 C: Destination (source) C-1list (08.CPYIN, (OB.CPYOUT))
IP2 D: Index within destination ({source) C-1list of capability
IpP3 De Index in the full C-1list of source (destination)

capability

These two actions allow the user to transfer a capability between the
full <C-1list and an arbitrary C-list. Two parameters are required to
indicate the location of the capability in the arbitrary C-list, and a
third to locate the capability in the full C-list.

Possible errors while copying a capability from a full C-list to an
arbitrary C-list:

Class Number Description

E.MISCE E.CLMOT C-list does not exist
FE.PARMNS E.NEGIX IP2 is negative
E.PARMS E.NEGIX IP3 1s negative
E.PARMS E.BIGIX IpP2 is too large
F.PARMS F.BIGIX IP3 is too large

The CAL Time-Sharing Systen

May 1971 4.4 C-list Actions

4.4.5 Change Uniqgue Name? {EC: CHUN)

IPY D: C-list index of ECS system object (OB.CHNAM)

This action allows the user to change the unique name of an object.
The system Jenerates a new capability for the object with all option
bits set, thereby invalidating all old capabilities for that object.
The capability for the cbject whose name is to be changed must carry
the option bit which allows such a change (0B.CHNAM). If the obiject is
a file for which there are references in any map entries, all such maps
will ke recompiled.

Possiltle errors while changing unique name:

Class Number Description
F.MISLE .MISSOB No such obiject
4.4.6 Zero a Capability (EC:2CAP)

IP1 D: Index in full C-1list of the capability

This action erases a capability by storing zeros in the indicated
capability slot in the full C-list.

Possible errors while zeroing a capability:

Class Number Description

B.PARNMS E.NEGIX C-list index is negative

E.PARNMS E.BIGIX C-list index exceeds full C-list 1length
F.PARMS E.NOTCL Not a C-list capability (indirection)
F.MISLE E.CLMOT C-list does not exist (indirection)

- - —— A — S -

2 privileged operation.

The CAL Time-Sharing Systen

May 1971 4.4 C~-list Actions

4.4.7 Create_a Capability Creating Authorization {EC: MCCA)

IP1 D: C-1list index for returned authorization

A capability «creating authorization is a special type of capability.
Such a capability may be used to create new capabilities. The second
word of the «capability contains the type of capability which may be
manunfactured under the authorization.

Possible errors while creating an authorization:

Class Number Description
E.MISCE E.NOAUTH No more capability types are available 3
4.4.8 Create a Capability cf Authorized Type (EC2CCAP)

IP1 D: C-list index for returned capability
IP2 C: A capability creating authorization
IP3 D: Data for second word of returned capability

A capability of the type specified by IP2, with all option bits on, and
with second word equal to IP3, is returned at the specified index in
the caller's C-list.

Only the entry/exit errcors are possible.

3 Note that since there are only about 48000 different capability
types, unrestricted wuse of this operation would allow one user to
exhaust the supply, thus making those that wanted a special capability
type later on very unhappy.

The CAL Time-Sharing Systenm

May 1971 4.4 C-list Actions

4.4.9 Destroy a C-list {EC: DCL)

IP1 C: Capability for C-list (0B.DSTRY)

The user may destroy a C-list when he no 1longer needs 1it; only the
index of a capability for the C-list is required. If the C-1list to be
destroyed is in the full path of the user's process, an F-retura 1is
initiated and the C-list is not destroyed.

Possible errors while destroying a C-list:

SS Number Description
ISCE E.CLMOT C-1ist does not exist

The CAL Time-—-Sharing Systenm

May 19711 4.6 Event Channel Actions

4.6 _EVENT CHANNEL ACTIONS

Create an Event Channel

Send an Event

Get an Event or Hang

Get an Event or F-return

Get an Event or Hang (Multiple)

Get an Event or P-return {(Multiple)
Destroy an Event Channel

4.6.1 Create an Event Channpel {EC:CEVC)

IP1 C: Capability for allocation block (0B.CREEC)
IP2 D: C-list index for new event channel capability
IP3 Dz Number of events that queue can hold

When an event channel is created it consists of a three word header and
an event queue which is initially empty. The header words are used to
maintain the queue of events and a queue of walting processes, which
develops if the queue of events becomes empty and processes request
events from that channel. When creating an event channel, the user
specifies a capability for an allocation block (IP1) which funds the
ECS space occupied by the event channel, a C-list index (IP2) where the
system can put the capability (with all options allowed) for the event
channel when it creates it, and the length (number of possible events)
of the event gueue (IP3).

Possible errors while creating an event channel:

Class Number Descripticn

E.ABLOCK E.NOABLK Allocation block does not exist
E.ABLOCK E.NOQECS No ECS availatle

E.PARHNS E.NEGIX C-list is negative

E.PARMS E.BIGIX C-list index exceeds full C-list
E.EVENT E.NEGQ Length of event queue < 0
ELEVENT E.BIGQ Event queue toc large

E.OPER E.CAPTY Type or options tad

The CAL Time-Sharing Systenm

May 1971 4,6 Event Channel Actions

4.6.2 Send an_Event (EC: SEV)

IP1 C: Capability for the esvent channel (OB.SNDEYV)
IP2 D: Datum part of event

This action allows the user to send an event to an event channel. The
user specifies the capability for the event channel (IP1) and a 60-bit
datum to be passed with the event (IP2). The system indicates the
disposition of the event to the user in Xé6. The following responses
are possible:

Condition Response
Event put in event queue 1
Event passed to a process 2
"YOU LOSE"™ event put in event queue 3
Event queue full 4

The first response indicates that all went well, and there was no
process awvaiting an event in the process queue. The second response
indicates that there was a process waiting in the queue and that it was
passed the event. The third response indicates that there was only one
free slot in the event queue (an event occupies two words); the
intended datum has been replaced by a "you lose® datum (-0) so that the
process which ultimately gets the event will be aware that the event
gqueue was full and that information was lost. The fourth response
indicates that no action was taken because the queue was full.

Possible errors resulting from sending an event:

Class Number Description

E.EVENT E.NOCHAN Event channel does not exist
E.OPER E.CAPTY Type or options bad

E.PARMS E.NEGIX C-1list is negative

E.PARMS E.BIGIX C-list exceeds full C-list

The CAL Time-Sharing Systenm

May 1971 4.6 Event Channel Actions

4,6.3 Get_an Event or Hang {EC: GEVH)

IP1 C: Capability for event channel (OB.GETEV)

A user requests an event from a channel by passing the C-list index of
the capability of the channel in question (IP1). If the event queue is
empty, the process must wait ("hang" or ¥block") until an event arrives
before it can resume execution. If more than one process is awaiting
an event, the first event sent to that channel is passed to the first
process, while the other process(es) continues to wait. The event is
returned to the calling process in X6 and X7. X6 contains the unique
name of the prccess which sent the event while X7 contains the event
datum, A chaining word index of 1 is packed into X6 (useful mainly in
multiple event channel work, see #.6.5).

Possible errors while getting an event:

Class Number Description

E.EVENT E.NOCHAN Event channel does not exist
E.OPER E.CAPTY Type or options bad

E.PARMS E.NEGIX C-1list index is negative

E.PARMS E.BIGIX C~1list index exceeds full C-list

4.6.4 Get an Event or F-return (EC: GEVF)

IP1 C: Capability for event channel (0B.GTEVF)

The user requests an event from a channel using the C-list index of the
event channel's capability (IPV). If the event queue is empty, an
F-return will be initiated in order to permit the process to take
alternative action. The event is returned in X6 and X7 as in 4.6.3
above.

Possible errors while getting an event:
Class Number Description
E.EVENT E.NOCHAN Event channel does not exist
E.OPER E.CAPTY Type or options bad

E.PARMS E. NEGIX C-1list index is negative
E.PARMS E. BIGIX C~1list index exceeds full C-list

The CAL Time—Sharing Systen

May 1971 4.6 Event Channel Actions

4.6.5 Get an_Event from One of a_Set_ of Event Channels or Hang

{EC: GVMH)
IP1 D: Pointer to list of C-list indices for event channels
(OB. GETEV...)
IP2 D: Number of event channels involved

The procedure for getting an event frcm one of a set of event channels
is similar to that for getting a single event (see #.6.3 above). The
channels are interrogated one at a time and if their respective event
queue is empty, the user's process will be queued on the process queue
of the event channel, If an event sSubsequently arrives or is
discovered on one of the event channels in the 1list, the process is

removed from all the process queues on which it has already been
chained and it is passed the event. If no event arrives or \is
discovered before the last event channel is interrogated, the process

must wait ("hang"™ or "block") until an event arrives on one of the

event channels.

Wwhen an event is finally passed in X6 and X7, the ordinal in the user’'s
list of the event channel producing the event is packed as the scale of

X6 {i.e., 1if the event came from the first channel in the list, 1 is
packed in the scale).
Possible errors while getting an event from a list of channels:
Class Number Description
E.EVENT E.NOCHAN Event channel dces not exist
E.PARMS E.NEGPAR Number of channels is < 0
E.PARMS E.BIGPAR Pointer to list + number of channels exceeds
FL
or number of channels exceeds scratch area
(P.PARAML - 2 cells)
E.PARMS E.NEGIX C-list index is negative
E.PARMS E.BIGIX C-1list index exceeds full C-list
E.OPER E.CAPTY Capability type or options bad

The CAL Time-Sharing Systenm

May 1971 4.6 Event Channel Actions

b.6.6 Get an Event from One_of Set of Event Chanpels or_ F-return

{EC: GVNF)

IP1 D: Pointer to list of C-1list indices for event channels
(OB.GTEVF...)

IP2 D: Number of event channels involved

This action 1is similar to the previocus one except that if all of the
event queues are empty for the event channels specified by IP1, an
F-return is initiated in order to permit the process to take alterna-
tive action.

When an event is finally passed in X6 and X7, the ordinal in the user’'s
list of the event channel producing the event is packed as the scale of
X6; (i.e., if the event came from the first channel in the list, 1 |is
packed in the scale).

Possible errors while getting an event from a list of channels:

Class Number Description

E.EVENT E.NOCHAN Event channel does not exist

E.PARMS E.NEGPAR Number of channels if < 0

E.PARMS E.BIGPAR Pointer to list + number of channels > Fi
or number of channels exceeds process
scatch area (P.PARML - cells)

E.PARMS E.NEGIX C-list index is negative

E.PARMS E.BIGIX C-list index exceeds full C-iist

E.OPER E.CAPTY Capability type or options bad.

The CAL Time-Sharing Systen

May 1971 4.6 Event Channel Actions

4.6.,7 Destroy_an Event Channel (EC: DEVC)

IP1 C: Capability for event channel (OB.DSTRY)

An event channel can be destroyed. The only parameter required is the
capability for the event channel which is to be destroyed. If there
are any processes waiting on the event channel's process gqueue, an
F-return is initiated leaving the event channel intact.

Possible errors while destroying an event channel:
Class Number Description
E.EVENT E.NOCHAN Event channel dces not exist
E.PARMS E.NEGIX C-1list index 1is negative

E.PARMS E. BIGIX C-1list index exceeds full C-list
E.OPER E.CAPTY Type or options bad

The CAL Time-Sharing Systen

Appendix A

Aprendix A

Tohle Y. ASUILl - Printer Character Xapping

ASCTT Drarrtap TEY CTTiaACC LD Prirter TSS ASCII|ASCII Printer TSS ASCII

Char Giaiid celte fChar Graraic cede IChar Graphic Cole
f |

blank i ¥ n] i - 40 { ! # i00
! < 1 | A A 41 | a A 101
" ¢ = T B 42 { b 8 102
= K | C C 43] ¢ c 103
$ B K { L D 44 | 4 D 104
¥ 5 | E E 45 | e F 105
£ A £ | F F 46 | f F 106
' 4 7 i G 5 u7 i a G 107
((10 1A H 50 { h H 110
)) 11] T 1 51 | i I 111
* * 12 | J J 52 13 J 112
+ + 13 | K X 53 Ik K 113
p . 1 u i L L 54 | 1 L 114
- e] M " 55] m M Ti5
. 16 i N g 56 I =0 N 116
/ b P00 » 57 i o 0 P17
4 « ! v . 60 | N P b0
! ! ! ! : 2 61 | 0 I
; 2) Pk R 62 | ¢ P 102
3 ‘ P ! 3 612 | 2 5 123
; ; s PT T ol (. T o4
N B - {) ‘ 65 I 7 1259
: o P Y 656 | v v 126
! ! R | i ol { W W 127
‘ . : T | x X 130
» P 71 | Y 151
; : : Py : 72 | VA 132
3 H ! v T 73 b (133
< < 14 N \/ 74] { blank 134
- - 3¢, i)) 75 .) 135
> > a P A 76 } ~ blank 136
? i, [- 77 { rubout blank 137

The CAL Time-Shdring Systen

Appeniix A

Table 2
Non=Grapric TTY Character Representation

3CIT Key Combination
entaticy Systzxt Representation Euaction
140 L)
141 %A
142 4B
143 *C
144 %D
145 1E
146 4R
147 %G Jell
150 %H Backspace
151 %1 Horizontal Tab
152 %J Line Feed
153 %K Vertical Tab
154 %L Page Eject
155 M
156 AN
157 %0
159 ip
1h 2 %R
153 %S
164 ZT
105 34
150 %V
167 W
174G kX Delete Line
171 7Y
172 77
173 118
174 %
175 %]
176 %
177 2L~

May 1971

Class

0 E.CHIP

1 EJARITH

2 E.PARMS

3 E.FILES

The CAL Time~Sharing Systen

Error Classes and Numbers

Appendix B

Error Classes and Numbers

E.NEGPAR

E.BIGPAR

E.NEGPT

E.BIGPT

E.NEGIX

E.BIGIX

E.NOFILES

E.ISBLK

E.INMAPS

E.NOBLK

E.NMISMCH

E. NOBKLC

SCCPE Call

Arith Error

Parameter or Pointer_ Errors

Parameter too small

Parameter too large (Param nuaber is
masked into errnum)

Pointer is negative

Pointer is too large {Pointer 1is
masked into errnum)

C-1list index is negative

C-1list index is too large (Index is

masked into errnum)

File-processing_Errors

File does not exist

Blcck to be created exists

Blcck is in map

Block to be moved does not exist
Blcck sizes not equal for move

Block to be destroyed does not exist

May 1971

10

m

12

13

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

E. NOTEMP
E.NEGSIZ
E.BIGSTIZ
E.NOTPOW
E.BIGFIL

E.IDERR

E.LLEV
E. NODFIL
E. NABR
E.DIOFRR
E.IMA
E.TMD
E.NATH
E.ZLEV
E.TMOPN
E.EXCLAM
E.SHCLAM
E.CLOCK
E. NOCLAN
E.NOLFH

E.TMGA

The CAL Time-Sharing System

Error Classes and Numbers

File to be destroyed is nonempty
Negative shape number

Shape number is too large

Shape number is not power of tvwo
File size is too great

ECS I/0 Error

Toc many levels

No such open disk file

No attach block record

Pisk 1/0 error

Too many attaches

Toc many detaches

Block not attached

One level file

Too many opens (local or global)
Already exclusive clainm
Already local shared clainm
Claim queue lock up (time out)
No local claim on release

No local file header space

Too many global attaches

May 1971

4 E.SUBP

5 EB.PROC

6 E.ABLK

10

1"

12

13

14

15

16

E.SAMNA
E.NOFATH
E. NOBLOC
E.COMP
E.MACSZ
E.NOFIND
E,FUOLSTK
E.ROOM
E.NCaAP
E.ESTK
E.STK

E.NLEAF

E.IFRET
E. NOXJ

E. NSTK

E.BLMISS
E.NOROQHM

E. PGONE

E.NOABLK

The CAL Time-Sharing Systenm

Error Classes and Numbers

Subprocess creation, call, and

return errors

Duplicate subp name

Named father does not exist

Block in swapping directive missing
Not enough room for map

Process becomes too big

Named subp does not exist

No rocm for subp in stack

No rocm for parameters

Too many capability params

Empty stack {(on return)

Empty stack (on F-return)

Attemgt to delete subp at root or
not leaf of subp tree

Illegal F-return

No CEJ where expected

Attemrt to delete subp in stack

Process Creation Errors

Block missing in swapping directive
Not enough rooa for map

Process gone from MOT

llocation Block Errors

——— vt - e

Joo

Allocation block gone

May 1971

7 E.OPER

10

11

12

24
25
26

21

28
30

E. NOECS
E. NOSLOT
E.NOSWP
E. NODSK

E.NORES

E.NOCP
E.NOMOT

E. NORLC

E.FATSON

E.CRGER

E.BADSN

E.NODDS

E.BUSY

E.RESV

E.ACTIV

E. NOFUND

0 E.IPO

The CAL Time-Sharing Systen

Error Classes and Numbers

Not encugh space to create object
No MOT slot to create object

No swapped ECS space

No disk space
Not enough reserved space for
donation

Not enough CP time for donation

Not enough MOT slots for donation
Not enough reserved space to cover
duplication of object during
reallccation.

One allocation block not father of
other

Resulting charge rate would be
illegal

Bad Service Number

out of DDS records

Cannot destroy accounting block
Accounting block holding reserved
space

Accounting block already active

No fixed ECS allocation block supp-

lied to disk systen

Operation Interpretation Errors

IPQ nct capability for operation

May 1971

8 E.MISCE

9 E.EVERT

10 E. NOERR

11 E.MAPS

10

E.NOOP
E.CAPTY
E.PSANY
E.NOTANY
E.USER
E.BIGORD
E.MANPAR

E.BIGCNT

E.CLMOT
E.MISSOB

E. NOAUTH

E.NEGQ
E.BIGQ

E. NOCHAN

E.NOERR1

E.ISDAE

E.NT1BLK

The CAL Time-Sharing Systen

Error Classes and Numbers

Operation not in MOT

Capability type or options bad
Param spec (any) encountered

Param spec (any) not encountered
Should be user supplied parameter
Order too big for scratch area

Too many parameters

Block param exceeds count in paranm

spec in operation

Miscellaneous_ Errors

Capability list not in MNOT
Misc cbject not in HOT
No more capability creating authori-

zations are available

Event_Channel Errors

Event queue too short
Event queue too long

Event channel not in MOT

No_subp to_take error

Error Class for Maps

Attempt to change or zero DAE

DAE attempts to bridge blocks

May 1971

12 E.PANIC

13 EC.DIRECT

E« NOTDAE
E.BADNNS
E.PRENT
E.WRGFL

E.WRFIL

E.HNLDP

E.NJRP

EN.BADEN
EN.INPOT

EN.NTOWN

EN.DUPNM
EN.NOSEC
EN.LOOP1
EN.LOOP2

EN.NTDSK

10 EN.ISOWN

11 EN.BGOPT

The CAL Time-Sharing Systea

Frror Classes and Numbers

DAE action applied to swapping dir
Bad word count or missing file
Previous entry during make map
Wrcng cap for previous file

Wrong file on delete map entry

fro

anpics (Interrupts)

Mild pamic (ZR test used by sonme

Major panic (NZ test used by some

Bad name given

Access-key not in access-list

Wrong actions used to delete 1link
entry

Cannot have duplicate names
Directory is full

Softlink chain too long

Successor link chain too long

Only disk system objects can be
hardlinked

Wrong action to delete ownership
entry

More than 42 options given to *add

May 1971

14 EC.DYNTG

15 EC.BEADS

12

13

14

15

16

17

EN.ISLCK

EN.NTLCK

EN.NTDIR

EN.NTKEY

EN.OWNS

EN.BSRV

EN.FLOL
EN.BLQC
EN.FDNT
EN.BGOC

EN.NTOP

The CAL Time-Sharing Systea

Error Classes and Numbers

pair?

Duplicate lock for new access pair
No such lock for access pair to be
deleted

Even scanlist entries must be
directories
0dd scanlist entries rust be
access—-keys
Directory to be deleted owns
something

Directory is currently reserved (ex.

open)

Dynamic Name_ Tag Errors

Full local open list
Too many local opns
Full global table

Too many global opens

No such locally open tag

Beads Errors

The CAL Time-Sharing System

Novemkter 1¢71 Option Bit Assignments

Arpendix C - Crticn Eit Assignments

Relative
Object Mpepmcnic [LCescripticn Bit Position
Allocaticn CB.LSTIRY T[Cestroy Allocaticn Block ¢
Block CB,CHNAM Change Unique Mane 1
CE.CFEAB C(Create Allccaticr Block 2
CE.CEFECL <(Create a C-list 3
CE.CEREFIL (Create a file 4
CE.CREPR (reate a frccess 5
CB.CFESP <(reate a sukbprccess 6
CE.CFEEC <(Create an evert channel 7
CR.AICRD C(Create an operaticn 8
CB.GIVE Reserved space dcnor 9
CB.GE1T Reserved space dcnee 10
CB.GCLC Create carpakility for nth object 11
OF.INCHR Increment charge field 12
CR.GIVCP CP time dcncr 13
CB.GETICP CF time dcnee 14
CR.GIVMT MC1T slct dcncr 15
CB.GETMT MCT slct donee 16
CB.,INMTR Increment DTS field 17
C-list CB,ILSTRY T[estroy C-list 0
CB.CHENAM Change unique nane 1
CBR.CEYIN Ccpy carpatility into C-1list 2
CB.,CEYOT Copy carpakility cut of C-list 3
CR.ICCCL Iccal C-1list fcr subprocess 4
File CB.LSTIRY T[estrcy a file 0
CB.,CHNAM <(Change aunique name 1
CE.CFEBL (reate a tlcck 2
CB.LEIBL TLelete a Lklcck 3
CB.FLFIL FEFead a file 4
CB.KFILE &®rite cr the file 5
CB.EFLMAP Flace pcrticn cf file in map 6
CBR,FDAE Cirect ECS Access 7
CE.CEEN (disk file) Cpen file 8
CB,CLCSE (disk file) Clcse disk file 9
CPR.,LCEBL {disk file) Create block 10
CR.ILLLBL {(disk file) LCelete block 11
CE.RATICH (disk file) Attach block 12
CE.LICH {disk file) Detach block 13
CE,CMAP {disk file) Fut in map 14
CB.ECLM {disk file) Exclisive clainm 15
CB.,SCLM (disk file) Shared clainm 16
CR.FEL (disk file) Felease clain 17
CR.FEREZ {disk file) Freeze file 18

Novemker 1971

Process

Subrrccess

Event
Channel

OPERATICK

CE,.,1KLCB
CB.XCEN

CB,LCSIRY
CB.,CHNAM
CE, SDINT

CBE.LSTIRY
CB. TEME
CE.FATHR
CB.SPFET
CB. ECNT

CB.INISP
CE.CALOE
CB.SCNSP
CB,CHMAP
CE.LAE

CE.STESH

CE.LSTIRY
CB.CHENAM
CEB. SNLEV
CB.GETEV
CE.,GIEVF

OR.LSTRY
CB.CHENAM
CB.ALLCR
CB,CHTYP
].CHCET

CB,CYCP

The CAL Time—-Sharing Systen

Cptiocn EBit Assignments

Test and reset dirty bit
{disk file) Excltsive open

Lestrcy a prccess
Change unigque narne
Interrugpted prccess

Lestroy sukprccess

Set tempcrary part of class ccde
Father sulprccess

Sulkprocess may te jump returned to
P-ccunter of csulprocess may be modified
Interrugrt sukrrccess

Sukrrocess calleé by operator

scn sukprccess

Create, zerc, cr change map entry
Cirect ECS Access map entry

Set Frrcr Selecticn Mask

Lestrcy event channel
Change unigue rame

Serd an event

GCet an event {cr hang)

Get an event {cr F-return)

Letrcy an operaticn

Change urique nase

Crder may be added to operaticn

Change rarameter specification type
in ar creration

Change cpticn Ltits for "user-
supplied capability"

Ccpy an coperatcr

Directcries (tc be suprplied)

19
20

N - D

-
E W 2O SOV NEWN O

N i O

The CAL Time-Sharing System

Novemker 1¢71 C-1list Type Field Values

Appendix L. C-1list Tyfpe Field Values

Ckject Iype Numker
Access Key 2737R1
Allccaticn Rlcck 1767B
CCA 1773B
Class Ccde 1737RB
C-list 12778
Cirectcry 1776R1
Cisk File 1775B?
ECS file 1577R
Fvent Channel 17E7E
Name tag: LCynaric 2€77R1
Static z£77B1
Creraticn 1677E
Suksystenm z377B1

	May 1971 Revision
	Foreward
	Contents
	Preface
	1.0 Introduction
	2.0 User Subsystem
	2.2 Editor
	2.3 Line Collector
	2.4 SCOPE Simulator
	2.6 Running BASIC
	2.7 Using BCPL
	2.8 Printer Driver
	2.9 Display Driver

	3.0 System Architecture
	3.1 Files
	3.4 Capabilities
	3.6 Event Channels

	System Actions
	4.1 File Actions
	4.4 C-list Actions
	4.6 Event Channel Actions

	Appendix A: Character Sets
	Appendix B: Error Classes and Numbers
	Appendix C: Option Bit Assignments

