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INTRODUCTION

Lisp has been in the forefront of symbol manipulation programming languages
for more than a decade and interactive implem(jentations on timeshared computer
systems have kept 1t up-to-date. 1In particular BBN Lisp for the SDS 940 and,
more recently, the PDP-10 provi&e a very large address space and powerful primitive-:
operations allowing interactive debugging and editting exte@;;ions, among others,
to be writteﬁ in Lisp itself. (1,2). CAL Lisp is an attempt to coé?nue this line
of development and hopefully harness a fast computer, the CDC 6400, and a not-so-
fast operating system, the CAg%imesharing system.

BBN has diverged from Lisp 1.5 (3) in several ways which increase efficiency
without, it is felt, detracting from the 1anguage. Firét, a linear pushdown stack
replaces the association list scheme for variable bindings and allows compiled
functions to reference their arguments directly. (These compiled functions still
place the variable names with the wvalues to facilitate debugging and maintain
compatibility with iﬁterpreted functions.) Second, the property list of an atom
is no longer used by Lisp to hold function definitions and constant values. Each
atom has three setﬁable attributes: a definition cell, referenced when the atom
is used as a function name; a 'zero-level value' cell, used when the atom occurs
as a free variable bound nowhere in the stack; and a property list cell, purely
for use by the user (including the Lisp-coded extensions) as a hatrack. Third,
the treatment of special forms, functions taking unevaluated and/or a variable

number of arguments, is nicely handled, with any of the four combinations allowed.

A number of generalizations and extensions in many other areas exist and in PDP-10

Lisp provision is made for an openended set of datatypes, after the spirit of SNOBOL4.



We wish to mimic the BBN Lisp faithfully enough to be able to utilize much of its
library of software (editor, breakpoint routine, etc.) and yet still clean up a
few of the inconsistencies which naturally occur as large systems evolve over the
years.

Our machine has a relatively large physical memory (23,000 words available
to a user process) with an awkward 60 bit worélength. Secondary storage capacity
is limitediwith 8 million words of disk and 300 thousand words of extended core
storage (gqg). Thus much of our effort has been applied to dense packing of data
structures. And since no paging or segmentation hardware exists, we have had to
carefully plan their inclusion in the software. The timesharing system does provide
a disk file structure buffered by the Ecsﬁand a software map to swap the central
memory to/from files (residing on disk or in ECS.)

The work is being done in BCPL, a high level language ostensibly suited for
systems programming. This should greatly reduce the time spent on coding, but
the resultaﬁt object program may be too large and slow to be feasible. We envision

rewriting sections in assembly language as necessary.
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The world of CAT, Tiisp can be characterized by a complex of eleven con-
centric rings. Rach ring represents a virtual machine, from the hardware (inner-
most ring) to the user program (outermost ring). The hardware consists of
32 K (K=1024) of M (60 bit words), 1 CFU, 10 PPUs, 300K ECS and eight million
words of disk storage. The ECS and disk act as secondary and tertiary storage
devices., The lack of really large scale bulk storage imposes severe restraints
on upon the upper layers of virtual machine. Next the ECS-INTERRUPT SYSTEM
layer implements a number of orthogonal actions which aid in the implementation
of a timesharing system. Of particular interest to Lisp is the ECS-CM
interaction, ie., process swapping from and to CM and ECS. Associated with
each user process is a software map which describes which blocks of CM are
to be written where into ECS (and vice versa). The CAL Lisp system uses that
software map to implement the virtual memory layer (described later).

In the CAL Timesharing system files can exist either on the disk or in
ECS. The low level disk system was designed to allow unused portions of a
file to reside on the disk while the currently used portions of a file may
reside in ECS. The directory system ﬁnplements\complicated‘searching procedures
to allow the user to employ symbolic names while describing or asking for his
files. The command interpreter-executor follows the two fold task of determining
the "semantics" of user or subsystem requests and then attempting to service those
requests. The virtual processor viewed from this point is the CAL Timesharing

System.

The lowest level processor directly implemented by CAL Lisp is the virtual
memory mechanism. There is a 256k§irtual memory divided into 1K of 256 word
pages. The Lisp system references a virtual address through special macros:
fetchvirtual(VA) and storevirtual(VA). They take a virtual address as input and
return the current CM address 'of the word named by that virtual address.

A page table is maintained ﬁhich contains a one word entry for every 256 word
page (See figure T ). The page taeble, which is also paged, contains one word
for every block in use, but need not contain entries for pages which aren't
being used. A virtual address only need be right shifted a sufficient number
of bits to produce the correct index in the page table. The virtual memory
mechanism returns the CM address of the word being referenced if it is around;

otherwise a call is made to the disk system to change the subprocess map.

|
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The disk system brings the missing file page into ECS from the disk and places
it in the current subprocess map--thereby effecting the paged memory. This
action may be preceded by the swapout-to-the-~disk for some page chosen by
the virtual memory mechanism. This occurs when CM is fully maééd with file blocks
of the virtual address space (See figured ). There is also a block buffer table
which maps 256 word blocks of CM onto the virtual page currently residing there.
Storing into a virtual address is more complicated: the paging mechanism must
check of the virtual address being stored into belongs to a read only page.
If so, a copy of this page is made, the r/o page is returned to the disk,*
the page table entry is changed to r/w and the appropriate CM address is
returned to the caller.
Important attributes of the virtual memory mechanism may be summarized
in the following ways:
1) A large virtual address space is mapped into a small physical address
space through use of software paging.
2) Software paging is accomplished by use of the subprocess map maintained
by the operating system (which uses it to remove the user process to ECS
when his time slice is up, or vice versa).
3) A Least Recently Used swapping strategy is implemented to decide which
virtual page must be swapped out of CM to make room for & different virtual
page.
4) When the system is smoothly running swapping experiments can be performed
to determine good swapping strategies: the swapping mechanism may decide to
keep more pages in ECS than there is room for in CM. This would mean that when
a page fault occured it would not be necessary to retrieve the page from the disk.
Virtual Segments
The BBN Lisp partitions the virtual address space into various types.
An atom could only occur on a page within certain bounds in the virtual address
space. While this allows for quick type checking by doing address arithmetic,
it also sets a static limit on the number of words which can be devoted to
any one type of object. CAL Lisp places no such address restrictions on obJjects.
When a page is created, it is assigned to a specified type (eg., atom, string, etc).
There is no limit to how many virtual pages can be devoted to a specified type
beyond the intrinsic limit of the 256 K virtual memory. '



Virbucl Adress
Pase

%e Table No.  Lie Ne.
cnbd g, — 1  Cenhul
Bk %ﬁﬁy Mewmery

[o—

Vivtual A’dgés Mapp\_\ﬁg

Fijwfe 3



This introduces the following problem: Therg is no way of predicting
in what order the pages of various types will be created. One page might be
of type atom while the next two virtual pages might be strings or numbers.
(See figure‘* ) « It is apparent that consecutive virtual addresses may lead
to objects of completely different type. While all primitive functions should't
have to worry about virtual address type, it is clear that chaos will result
if virtual addresses aren't neatly "bundled." ‘

The virtual segment layer of the CAL Lisp system stands between the
virtual memory and the data structures fbr the reasons described above.
The virtual segment mechanism follows algorithms fitted specifically for
the type of the data structure it may be handling et a given time. Thus,
when the string creation routine decides it wants k words of string space
it should never be concerned with page boundries. The virtual segment processor
hands it a linked chain of k words which uses virtual addresses as pointers.
Thus the distinction about pages disappears. The stack primitives also illustrate
the need for the virtual segmentor. The stacks used in Lisp are implemented
through pagina and the virtual memory mechanism. A function using the stack
only wants to deal with the stack interms of a current pointer and an index’
into the stack. Every function is guaranteed 256 consecutive entries in the
stack without regard to page boundries. The virtual segment machinery takes
all necessary steps to assure that when pushing or poping the stack causes a
stack page to be swapped, the resultant physical change in CM is invisible to
the function. In general the virtual segment méchanism decides where the
next owrd or serveral fords of & given type are to come from. At times the
distinction between the virtual segmentor and other portions of the system
seems to blur: The primary task of CONS as implemented by BBN and CAL Lisp
(aside from putting the car and cdr pointers into the cons node) is to use
a relatively complicated algorithm to find the most efficient page fo put
the new cons node on. This is effectively the kind of task the virtual segmentor
performs.

Data Structures

CAL Lisp data structures are the objects which the Lisp machine manipulates
and references. These objects include lists,arrays,strings, stacks, atoms,
hash tables, and pointer blocks.(among others).

Lists were designed to take advantage of the large--60 bit--word on the
CDC 6400, CAL Lisp "lists" are constructed out of nodes each with two fields,
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car and cdr. Fach field contains an eighteen bidvirtual address; a node
occupies 36 bits and there are three list nodes packed into every
two machine words (allowing four bits per node for marking,etc). (See figure ).
This is accomplished by unpacking the third node into its two constituents
(the car and cdr subfields) which are then placed in separate, consecutive
words. Fach two pages worth of list space requirés three pages worth of
addresses, so list pages are allocated three at atime, adjacently. Only the
first two are mapped to the disk (or even created at all). The third page,
known as a pseudo page, gets a page table entry with a special file number and
type bits. The list primitives compute the position of these addresses in the
remaining portions of the other two pages. Although the two "real' pages
are allocated simultaneously, the actual disk space may not be created until later,
as needed.

Free storage is kept on a separate list for each "real" page assigned
to lists. The head of this list, together with a count of its length are
kept in the "aux" field of the corresponding page table entry. The chains to
not use regular virtual memory addresses, but rather a scheme using short pointers
local to the page (See figure ).

Note that "paired" list pages need not be swapped into adjacent core blocks.
Nor do both pages need to be in CM at the same time. The virtual segmentor is
concerned with maping references to lists on a pseudo page to a reference on
an appropriate "real" page:

The Lisp machine uses two stacks, the control stack with an entry for
every function called, and the parameter stack with an entry for each instance
of a variable binding (effectively a linearized A-list). The pages constituting
each of these stacks are linked together by two doubly linked lists winding
through the page table entries (See figure )e To avoid going through

virtual memory there is an "active" region of the parameter stack. Up to 256

of the arguments, local variables, and free variables of the current function
are kept contiguously in core (in the "stack"). A cell is maintained to contain
the CM address of the first stack entry for the current'function; compiled.code

"indirec indexed" references through this cell. Control stack entries

can make
are illustrated in figure .
An atom is defined to be a word (on a page of type "atom") consisting of

three fields:



1) The virtual address of the fTunction definition or the virtual address of NIL.
2) The virtual address of the value or the virtual address of the atom INOBIND.
3) The wirtual address of the property list or the virtual address of NIL.

The.virtuél address of the atom NIL is zero. The atoms whose print names
represent the character :set used by CAL Lisp can be addressed by adding a
constant to their rotated ascii value.

Associated with three pages of atoms is one page of print name pointers.

The print name pointer page contdins the virtual addresses of the strings
which represent the print name for each atom (See figumesv. To take advantage
of the large word size, there are three print name pointers per word in a
print name pointer page.

The hash table contains entries which point to a field in a print name '
pointer page. To take advantage of the large word size, a word in the hash table
contains three 20 bit entries. The hash table entries contain an 18 bit
virtual address into a print name pointer page and a 2 bit modifier denoting
which "column" in the word is being referenced. (See figure g').

When an atom is to be created, the hashing mechanism is presented with the
print name of the new atom. If no such atom already exists, the string representing
the print name is created, the atom and appropriate print name pointer entry
are created and the caller is returned the virtual address of the new atom.

An appropriate entry is also made in the hash table. If an atom with that
print name already exists, the virtual address of that atom is returned.

A string has two parts. There is a header word describing the string
and a series of linked words which contain the string characters. Rotated
ASCII is the character code used by CAL Lisp (and by CAL Timesharing System).

The words are linked by virtual address pointers so there is no concern with
page boundries. There are Lisp machine primitives which directly handle
strings (get the i th character, make a list or strings, are two strings
equal, etc.). ( See Fiﬁv«c C.)

Numbers exist in pages of their own. In a fashion analagous to the BBN Lisp
implementatibn of small integers, small integers in CAL Lisp are never written
into "real" space. A bias added to the virtual address of the small integer will
give the "real" value of the integer. Large integers and floating point numbers
look like normal 60 bit words of that kind. Each has its own page type.
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THE LISP MACHINE

Lisp-%ééhines are'partiél recursive functions, and we may employ the jargon
of recursive definitions in describing the nature of these programs. When defining
a function "in terms of itself', a starting point is needed to prevent circulafity.
The basis in Lisp is a collection of primitive functions coded into the system
and called subroutines or subrs for short. Subrs manipulate the objects defined
by Lisp (lists, atoms, numbers, strings, etc.) , perform input/output, and alter-
the flow of control in function evaluation; about 100 of them are needed altogether.

Continuing the analogy we see that the induction step consists of the ability
to define new functions in terms of old ones, via the lambda expression. In BBN
and CAL Lisp, the interpretation of functions is subdivided among a collection of
subrs. EVAL is essentially a function caller - it evaluates the arguments (if
necessary) and transfers control to é subr or a compiled function definition.

COND, PROG, etc. are all subrs due to the flexibility of the special form
mechanism; they can be independently changed or even written in Lisp and compiled.
(For example, see Figure 7 for a Lisp definition of LABEL.)

Underlying the Lisp machine is the pushdown stack, on which are bound the
- values of LAMBDA and PROG variables and the states of functions currently being
evaluated. Actually two stacks are used: a parameter stack for bindings and a
control stack for saving return links. This makes the variable searcher a little
simpler at the cost of increased page breakage to support the two stacks.
References to the control stack simply go through the "fetch virtual' and '"store

virtual" actions of the paging mechanism. The parameter stack is treated specially,



(PUTDQ LABEL
(NLAMBDA (FN EXP)
(LIST (QUOTE NLAMBDA)
~ (QUOTE X)
(LIST (LIST (QUOTE NLAMBDA)
FN
(LIST (QUOTE EVAL)
(LIST (QUOTE CONS)
FN
(QUOTE X))))
EXP)))))

Look Ma, no hands!
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though. Two contiguous core blocks are reserved to hold the two top (most recent)
péges, and a pointer into this CM region to the first parmater of the current functidn
is maintained. In fact compiled code will run with this ppinter in an index register
so parameter references will be very fast. This scheme limits the amount of local
storage (arguments and temporaries) a function may have to one page's worth, split

across the two contiguous blocks.

One drawback of the pushdown stack over an associafion list for variable bindings
is that the FUNARG device of Lisp 1.5 cannot be simply implemented. We propose
to use a mechanism, used by PDP-10 Lisp (2), which handles functional arguments
but not functions whic¢h return functions as value (at least when the returned
function references thevenvironment from which it was returned.) A special
parameter stack entry distinguishable from a bound variable entry is used when
a FUNARG is evaluated to cause the variable searcher to skip down the stack,
ignoring the range of bindings not logically accessible to the functional argument.
(See Figure g€ for stack entry formats.)

References to ''global" variables, unbound by any function but with a value
cell whose contents are not equal to NOBIND, ordinarily cause a search of the
(unbypassed portions of the) parameter stack, to aécertain that the variable is
indeed unbound. It would be desirable to keep a small hash table of recentiy
used global variables and their values, to avoid the stack search if possible.
Unfortunately this idea seems to'confliét with the "skips" in the stack. A
variable would be put in the hash table oniy if a stack search did not find a

| binding for it, but this search must look inside "skipped" regions of the stack.

f Otherwise, if a variable bound in such a region were then placed in the hash table,
{ then when the skip was removed the correct binding of the variable would be hidden.
|
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The EVAL of CAL Lisp is very similar to BBN's; the flowchart of Figure 9 should be
self-explanatory. One difference is that as the arguments for a function call

are evaluated, they are bound to the successive integers 1,2,3,... . This is in
tontrast to the "lower case a,b,c,..." approach of BBN and allows the full ASCII
character set to be used in atoms which are variables.

The subr has been defined to be one of the datatypes of CAL Lisp; a subr
object is an entry in the subr table containing the expected number of arguments,
whether or not the arguments are to be evaluated, and the address in system code
of the actual subroutine. (See Figurel).) The subr table is not part of writable
virtual memory, although it is in the page table as must be all objects. This
level of indirection allows the SYSIN/SYSOUT state-saving mechanism to be used

across reassemblies of the system code, whiéh may alter the subroutine addresses.

(LOGOUT)
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