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INTRODUCTION 

Lisp has been in the forefront of symbol manipulation programming languages 

for more than a decade and interactive implem~entations on timeshared computer 

systems have kept it up-to-date. In particular BBN Lisp for the SDS 940 and, 

more recently, the PDP-10 provide a very large address space and powerful primitive'; 
) .. / 

operations allowing interactive debugging and editting ext~sions, among others, 
-t 

to be written in Lisp itself. (1,2). CAL Lisp is an attempt to coninue this line 
t 

of development and hopefully harness a fast computer, the CDC 6400, and a not-so­

r 
fast operating system, the CA~Timesharing system • 

..; 

BBN has diverged from Lisp 1.S (3) in several ways which increase efficiency 

without, it is felt, detracting from the language. First, a linear pushdown stack 

replaces the association list scheme for variable bindings and allows compiled 

functions to reference their arguments directly. (These compiled functions still 

place the variable names with the values to facilitate debugging and maintain 

compatibility with interpreted functions.) Second, the property list of an atom 

is no longer used by Lisp to hold function definitions and constant values. Each 

atom has three settable attributes: a definition cell, referenced when the atom 

is used as a function name; a "zero-level value" cell, used when the atom occurs 

as a free variable bound nowhere in the stack; and a property list cell, purely 

for use by the user (including the Lisp-coded extensions) as a hatrack. Third, 

the treatment of special forms, functions taking unevaluated and/or a variable 

number of arguments, is nicely handled, with any of the four combinations allowed. 

A number of generalizations and extensions in many other areas exist and in PDP-10 

Lisp provision is made for an openended set of datatypes, after the spirit of SNOBOL4. 



We wish to mimic the BBN Lisp faithfully enough to be able to utilize much of its 

library of software (editor, breakpoint routine, etc.) and yet still clean up a 

few of the inconsistencies which naturally occur as large systems evolve over the 

years. 

Our machine has a relatively large physical memory (23,000 words available 

to a user process) with an awkward 60 bit wordlength. Secondary storage capacity ... 
is limited. with 8 million words of disk and 300 thousand words of extended core 

f ,: storage (~c~). Thus much of our effort has been applied to dense packing of data 

structures. And since no paging or segmentation hardware exists, we have had to 

carefully plan their inclusion in the software. The timesharing system does provide 

a disk file structure buffered by the ECS, and a software map to swap the central 

memory to/from files (residing on disk or in ECS.) 

The work is being done in BCPL, a high level language ostensibly suited for 

systems programming. This should greatly reduce the time spent on coding,but 

the resultant object program may be too large and slow to be feasible. We envision 

rewriting sections in assembly language as necessary. 



Th8 "\.-,orlo of' CJ\T, Lisp can be characterized by a complex of eleven con­

centric rings. F.ach ring represents a virtual machine, from the hardware (inner­

most ring) to the user program (outerm09t ring). The hardware consists of 

32 K (K=102h) of eM (60 bit words), 1 CPU, 10 PPUs, 300K ECS and eight million 

words of disk storage. The ECS and disk act as secondary and tertiary storage 

devices. The lack of really large scale bulk storage imposes severe restraints 

on upon the upper layers of virtual machine. Next the ECS-INTERRUPT SYSTEM 

layer implements a number of orthogonal actions which aid in the implementation 

of a timesharing system. Of particular interest to Lisp is the ECS-CM 

interaction, ie., process swapping from and to CM and ECS. Associated with 

each user process is a software map which describes which blocks of CM are 

to be written where into ECS (and vice versa). The CAL Lisp system uses that 

software map to implement the virtual memory layer (described later). 

In the CAL Timesharing system files can exist either on the disk or in 

ECS. The low level disk system was designed to allow unused portions of a 

file to reside on the disk while the currently used portions of a file may 

reside in ECS. The directory system implements complicated searching procedures 

to allow the user to employ symbolic names while describing or asking for his 

files. The command interpreter-executor follows the two fold task of determining 

the "semantics" of user or subsystem requests and then attempting to service those 

requests. The virtual processor viewed from this point is the CAL Timesharing 

System. 

The lowest level processor directly implemented by CAL Lisp is the virtual 

memory mechanism. There is a 256kYirtual memory divided into lK of 256 word 

pages. The Lisp system references a virtual address through special macros: 

fetchvirtual(VA) and storevirtual(VA). They take a virtual address as input and 

return the current CM address 'of the word named by that virtual address. 

A page table is maintained which contains a one word entry for every 256 word 

page (See figure~). The page table, which is also paged, contains one word 

for every block in use, but need not contain entries for pages which aren't 

being used. A virtual address only need be right shifted a sufficient number 

of bits to produce the correct index in the page table. The virtual memory 

mechanism returns the CMaddress of the word being referenced if it is around; 

otherwise a call is made to the disk system to change the subprocess map. 
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The disk system brings the missing file page into ECS from the disk and places 

it in the current subprocess map--thereby effecting the paged memory. This 

action may be preceded by the swapout-to-the-disk for some page chosen by 

the virtual memory mechanism. This occurs when CM is fully ma{ed with file blocks 

of the virtual address space (See figure 3 ). There is also a block buffer table 

which maps 256 word blocks of CM onto the virtual page currently residin~ there. 

Storing into a virtual address is more complicated: the paging mechanism must 

check of the virtual address being stored into belongs to a read only page. 

If so, a copy of this page is made, the r/o page is returned to the disk, ' 

the page table entry is changed to r/w and the appropriate CM address is 

returned to the caller. 

Important attributes of the virtual memory mechanism may be summarized 

in the following ways: 

1) A large virtual address space is mapped into a small physical address 

space through use of software paging. 

2) Software paging is accomplished by use of the subprocess map maintained 

by the operating system (which uses it to remove the user process to ECS 

when his time slice is up, or vice versa). 

3) A Least Recently Used swapping strategy is implemented to decide which 

virtual page must be swapped out of CM to make room for a different virtual 

page. 

4) When the system is smoothly running s1.apping experiments can be performed 

to determine good swapping strategies: the swapping mechanism may decide to 

keep more pages in ECS than there is room for in CM. This would mean that when 

a page fault occured it would not be necessary to retrieve the page from the disk. 

Virtual Segments 

The BBN Lisp partition~ the virtual address space into various types. 

An atom could only occur on a page within certain bounds in the virtual address 

space. While this allows for quick type checking by doing address arithmetiC, 

it also sets a static limit on the number of words which can be devoted to 

anyone type of object. CAL Lisp places no such address restrictions on objects. 

When a page is created, it is assigned to a specified type (eg., atom, string, etc). 

There is no limit to how many virtual pages can be devoted to a specified type 

beyond the intrinsic limit of the 256 K virtual memory_ 
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This introduces the following problem: There is no .my of predicting 

in what order the pages of various types will be created. One page might be 

of type atom while the next two virtual pages might be strings or numbers. 

(See fiQ.1re 4 ). It is apparent that consecutive virtual addresses may lead 

to objects of completely different type. 1~ile all primitive functions should't 

have to worry about virtual address type, it is clear that chaos will result 

if virtual addresses aren't neatly "bundled." 

The virtual segment layer of the CAL Lisp system stands between the 

virtual memory and the data structures for the reasons described above. 

The virtual segment mechanism follows algorithms fitted specifically for 

the type of the data structure it may be handling at a given time. Thus, 

when the string creation routine decides it wants kwords of string space 

it should never be concerned with page boundries. The virtual segment processor 

hands it a linked chain of k words which uses virtual addresses as pointers. 

Thus the distinction about pages disappears. The stack primitives also illustrate 

the need for the virtual segmentor. The stacks used in Lisp are implemented 

through pagina and the virtual memory mechanism. A function using the stack 

only wants to deal with the stack interms of a current pointer and an index' 

into the stack. Every function is guaranteed 256 consecutive entries in the 

stack without regard to page boundries. The virtual segment machinery takes 

all necessary steps to assure that when pushing or poping the stack causes a 

stack page to be swapped, the resultant physical change in CM is invisible to 

the func~ion. In general the virtual segment mechanism decides where the 

next owrd or serveral fords of a given type are to come from. At times the 

distinction between the virtual segmentor and other portions of the system 

seems to blur: The primary task of CONS as implemented by BBN and C.~ Lisp 

(aside from putting the car and cdr pOinters into the cons node) is to use 

a relatively complicated algorithm to find the most efficient page to put 

the new cons node on. This is effectively the kind of task the virtual segmentor 

performs. 

Data Structures 

CAL Lisp data structures are the objects which the Lisp machine manipulates 

and references. These objects include lists,arrays,strings, stacks, atoms, 

hash tables, and pointer blocks. (among others). 

Lists were designed to take advantage of the large--60 bit--word on the 

CDC 6400. CAL Lisp "lists" are constructed out of nodes each with two fields, 
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car and cdr. Each field contains an eighteen bi~irtual address; a node 

occupies 36 bits and there are three list nodes packed into every 

two machine words (allowinG four bits per node for marking,etc). (See figure ). 

This is accomplished by unpacking the third node into its two constituents 

(the car and cdr subfields) which are then placed in separate, consecutive 

words. F~ch two pages worth of list space requires three pages worth of 

addresses, so list pages are allocated three at atime, adjacently. Only the 

first two are mapped to the disk (or even created at all). The third page, 

known as a pseudo page, gets a page table entry with a special file number and 

type bits. The list primitives compute the position of these addresses in the 

remaining portions of the other two pages. Although the two "real" pages 

are allocated simultaneously, the actual disk space may not be created unti·l later, 

as needed. 

Free storage is kept on a separate list for each "real" page assigned 

to lists. The head of this list, together with a count of its length are 

kept in the "aux" field of the corresponding page table entry. The chains to 

not use regular virtual memory addresses, but rather a scheme using short pOinters 

local to the page (See figure ). 

Note that "paired" list pages need not be svTapped into adjacent core blocks. 

Nor do both pages need to be in eM at the same time. The virtual segmentor is 

concerned with maping references to lists on a pseudo page to a reference on 

an appropriate II real" page. 

The Lisp machine uses two stacks, the control stack with an entry for 

every function called, and the parameter stack with an entry for each instance 

of a variable binding (effectively a linearized A-list). The pages constituting 

each of these stacks are linked together by two doubly linked lists winding 

through the page table entries (See figure ). To avoid going through 

virtual memory there is an "active" region of the parameter stack. Up to 256 
of the arguments, local variables, and free variables of the current function 

are kept cont iguously in core (in the "stack"). A- cell is maintained to contain 

the eM address of the first stack entry for the current function; compiled code 

can make "indirec indexed" references through this cell. Control stack entries 

are illustrated in figure 

An atom is defined to be a word (on a page of type' "atom") consisting of 

three fields: 



1) The virtual address of the function definition or the virtual address of NIL. 
2) The virtual address of the value or the virtual address of the atom nOBIND. 
3) The virtual address of the property list or the virtual address of NIL. 

The virtual address of the atom NIL is zero. The atoms whose print names 

represent the character 'set used by CAL Lisp can be addressed by adding a 

constant to their rotated ascii value. 

Associated with three pages of atoms is one page of print name pointers. 

The print name pointer page contains the virtual addresses of the strings 

which represent the print name for each atom (See figure~). To take advantage 

of the large word size, there are three print name pointers per word in a 

print name pointer page. 

The hash table contains entries which point to a field in a print name 

pointer page. To take advantage of the large word size, a word in the hash table 

contains three 20 bit entries. The hash table entries contain an 18 bit 

virtual address into a print name pointer page and a 2 bit modifier denoting 

which "column" in the word is being referenced. (See figure r ). 
When an atom is to be created, the hashing mechanism is presented with the 

print name of the new atom. If no such atom already exists, the string representing 

the print name is created, the atom and appropriate print name pointer entry 

are created and the caller is returned the virtual address of the new atom. 

An appropriate entry is also made in the hash table. If an atom with that 

print name already exists, the virtual address of that atom is returned. 

A string has two parts. There is a header word describing the string 

and a series of linked words which contain the string characters. Rotated 

ASCII is the character code used by CAL Lisp (and by CAL Timesharing System). 

The words are linked by virtual address pointers sO there is no concern with 

page boundries. There are Lisp machine primitives which directly handle 

strings (get the i th character, make a list or strings, are two strings 

equal, etc.). (~e-e ~'~\A"~ '.) 
Numbers exist in pages of their own. In a fashion analagous to the BBN Lisp 

implementation of small integers, small integers in CAL Lisp are never written 

into '!real" space. A bias added to the virtual address of the small integer will 

give the "real" value of the integer. Large integers and floating point numbers 

look like normal 60 bit words of that kind. Each has its own page type. 



[ I ;. . I 
ii' ./, i : II I' 

{Jf'!.()j !1/i11~' 

(0 OJ Nt t.') P'I (; (' __ 

~ ~~~-.--.l.--~--._-L.~_~_ 
. I ~ L ;', \ k"'}' ;' i j i,' /;: 

,.------ --~ ---'------r i : ; , 
I I ~-;i I i '\1 i '_----

1 
I 

I I I I i 

L , i1~- -~ -----_ .. -- . -- ... -,-, .. ·-t 

( 

I S'rir< .')1;1 rf< ,.j P7 t? I 
I 

J 
K 

. ~- -----1----+-

c.-I 

riA prj( A *) II!. AI)!ll 

'fl; 76 l<;y lS-
I , 

8T~\A)G~ (Y1C\SL I 
,I 

! 
A1t;t.'V\ n~S k-

,-!~~~ 1'6 .-_ .. '~ ____ ./~~_ '1) <: ____ / / 

/ 



, 

I I eli ct-! (JI (H CHjCH V4PT!< 2.. 

VAPTN.l -

C f1'; (Z V,·UL,1-:' !UI,It'l"SrcJ cr: Ch-iA-·.)cTt)c~ /;11 nilS 
(f. ;(,12 0 

rC S I ~/Cfl :1!( F- 1/:; r :57121rl9 
(~~rf(j (/()()rL~ CO/'t(JA.,c ,'5 TA: I /L,){;; 

f?)t 6 ( 115 

L/,rfu4L !JJ~J're.\;') Po/de r tD 
ilieXf ST.CI.1){;) WORD cJ-; 20)0 

,C; e u::' Iii J) i .f- (014 ff?(V ;1-SCll c hA t.J)c/P./) 
(5;-~ 'c~) 0 

'-'-- (~. ~:­

I t--l i. I \. , 1\ i 

: ' ----



THE LISP MACHINE 

Lisp iMehines are partial recursive functions, and we may employ the jargon 

of recursive definitions in describing the nature of these programs. When defining 

a function "in terms of itself", a starting point is needed to prevent circularity. 

The basis in Lisp is a collection of primitive functions coded into the system 

and called subroutines or subrs for short. Subrs manipulate the objects defined 

by Lisp (lists, atoms, numbers, strings, etc.) , perform input/output, and alter-

the flow of control in function evaluation; about 100 of them are needed altogether. 

Continuing the analogy we see that the induction step consists of the ability 

to define new functions in terms of old ones, via the lambda expression. In BBN 

and CAL Lisp, the interpretation of functions is subdivided among a collection of 

subrs. EVAL is essentially a function caller - it evaluates the arguments (if 

necessary) and transfers control to a subr or a compiled function definition. 

COND, PROG, etc. are all subrs due to the flexibility of the special form 

mechanism; they can be independently changed or even written in Lisp and compiled. 

(For example, see Figure i for a Lisp definition of LABEL.) 

Underlying the Lisp machine is the pushdown stack, on which are bound the 

values of LAMBDA and PROG variables and the states of functions currently being 

evaluated. Actually two stacks are used: a parameter stack for bindings and a 

control stack for saving return links. This makes the variable searcher a little 

simpler at the cost of increased page breakage to support the two stacks. 

References to the control stack simply go through the "fetch virtual" and "store 

virtual" actions of the paging mechanism. The parameter stack is treated specially, 



(PUTDQ LABEL 

(NLAMBDA (FN EXP) 

(LIST (OUOTE NLAMBDA) 

(QUOTE X) 

(LIST (LIST (QUOTE NLAMBDA) 

FN 

(LIST (QUOTE EVAL) 

EXP»») 

(LIST (QUOTE CONS) 

FN 

(QUOTE X»» 

Look Ma, no hands! 
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though. Two contiguous core blocks are reserved to hold the two top (most recent) 

pages, and a pointer into this eM region to the first parmater of the current function 

is maintained. In fact compiled code will run with this pointer in an index register 

so parameter references will be very fast. This scheme limits the amount of local 

storage (arguments and temporaries) a function may have to one page's worth, split 

across the two contiguous blocks. 

One drawback of the pushdown stack over an association list for variable bindings 

is that the FUNARG device of Lisp 1.5 cannot be simply implemented. We propose 

to use a mechanism, used by PDP-lO T:.tsp (2), which handles functional arguments 

but not functions which return functions as value (at least when the returned 

function references the environment from which it was returned.) A special 

parameter stack entry distinguishable from a bound variable entry is used when 

a FUNARG is evaluated to cause the variable searcher to skip down the stack, 

ignoring the range of bindings not logically accessible to the functional argument. 

(See Figure g for stack entry formats.) 

References to "global" variables, unbound by any function but with a value 

cell whose contents are not equal to NOBIND, ordinarily cause a search of the 

(unbypassed portions of the) parameter stack, to ascertain that the variable is 

indeed unbound. It would be desirable to keep a small hash table of recently 

used global variables and their values, to avoid the stack search if possible. 

Unfortunately this idea seems to conflict with the "skips" in the stack. A 

variable ~ould be put in the hash table only if a stack search did not find a 

binding for it, but this search must look inside "skipped" regions of the stack. 

Otherwise, if a variable bound in such a region were then placed in the hash table, 

then when the skip was removed the correct binding of the variable would be hidden. 
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The EVAL of CAL Lisp is very similar to BBN's; the flowchart of Figure j should be 

self-explanatory. One difference is that as the arguments for a function call 

are evaluated, they are bound to the successive integers 1,2,3, •••• This is in 

contrast to the "lower case a,b,c, ••• " approach of BBN and allows the full ASCII 

character set to be used in atoms which are variables. 

The subr has been defined to be one of the datatypes of CAL Lisp; a subr 

object is an entry in the subr table containing the expected number of arguments, 

whether or not the arguments are to be evaluated, and the address in system code 

of the actual subroutine. (See FigureJO.) The subr table is not part of writable 

virtual memory, although it is in the page table as must be all objects. This 

level of indirection allows the SYSIN/SYSOUT state-saving mechanism to be used 

across reassemblies of the system code, which may alter the subroutine addresses. 

(LOGOUT) 
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