
' 
August 1S71 

CAL TSS REport 

Howard Sturgis 

July 1971 

University of California 
Ccmi:uter Center 

eerkelEy 

CAL TSS Report 



CAL TSS Report. 

August 1'-371 

Introduction 

The purpose of this report is two-fold: first, to make available 
detailed infocmaticn ccncerning the fresent status of CAL TSS, and 
second, tc provide a basis foe management discussion of the future 
course of development fot C!\L 'ISS. Since the TSS staff is small, not 
all projects can te pursued at once. 

CAL TSS is a large-scale, time-shared operating system foe the CDC 
6400. It has teen under development since the summer of 1968; the 
original goals of the system were to frovide 

1) a facility to supfort interactive languages for the use of 
students and other 'light' UEers of computers. 

2) a facility for th~ dev2lcpment and use of large programs; 
and 

3) a system for the development and use of large, sophisticated, 
and interactive programming languages. 

On March 16, 1971 CAL TSS, with all of its major modules included, 
made available to the user community as a demonstration system. 
versicn has many rough edges and some missing pieces, but is 
improved. 

was 
This 

being 

At present the system can SUfport a maximum of.15 teletypes, of which 
all can be in the BASIC subsystem, or some can be using the Editor and 
SCOPE Simulator. It is expected that, in September, with all of ECS, 
the system will be able to supfort abcut 50 teletypes, all in BASIC, or 
most in EASIC and some using the Editcc and SCOPE Simulator which is a 
significant fraction of the load on the A machine. 

This cepcrt contains a detailed discussion of what the current version 
of the system can do and its problems; it is accompanied by a number of 
appendices.1 

1 Appendix B was contribute~ by Vance Vaughan. 

2 

-- - - - - -- - - - ---- - - -- - - -- --- - - - -- ----- --------------- --------------



CAL TS S Report 

August 1<;71 

Current Facilities_and_ca2acity 

At the present time CAL TSS provides: 

PASIC 
SCOPE Simulatcr 

Editor 

Lin€ Printer 
Card Beader 

BCPl 

Permanent. Files 

File Frotecticn 
and Sharing 

An interactive compiler. 
A subsystem that will run many programs which 
run on the CBC SCOPE operating system. In 
particular it supports the FORTRAN compiler, 
the CCMFASS assembler and the SNOBOL compiler 
of the A machine. 
An interactive subsystem for the preparation, 
examination and modification of text files, 
(which may be submitted as input files to 
SCOPE Simulator, or may be output files from 
runs of the SCOFE Simulator). 
Subsystems for printing output files on the 
high-speed line printer and reading card decks 
on the high-speed card reader. 
A programming language for sophisticated pro
grammers. Intended as a system programmers 
language. 
Files which may be kept within the system from 
day to day. (A program does not have to be 
re-entered each time it is run.) 

Programs written by one user may be used by 
ethers if the writer desires. 

The present system will support a maximum of 15 teletypes. These 15 
teletypes can all be in the BASIC subsystem or in the Editor. A few 
could be using the SCOP! Simulator instead of BASIC/Editor, but as the 
number cf people simultaneously using SCOPE goes up, the total number 
of users that can be supported goes dcwn. The system has supported 6 
users simultaneously interacting with a FORTRAN program run under 
SCOPE. 

Comiarison_with the_Eatch System 

It is difficult to compare 15S with the tatch system. One of the few 
statistics available about the tatch system is the number of jobs run 
per day. This goes up to about 4000 at times of heavy load. 
Unfortunately, most of the jobs con on the batch system contribute very 
little to the total time used and are generally thought to be small, 
short student jobs. One of the purposes cf TSS was to support this 
kind cf use. 

Experience indicates that a student, with a little experience using the 
system, can do the eguivalent of 4 batch jobs during 1 hour at a 
teletype. This estimate assumes that most of the information obtained 

] 



CAL TSS Report 

Auqust 1971 

in the 4 tatch jots 
in fact seems to 
system. Thus, 40 
equivalent of 160 
batch jobs per day= 

relates to syntactical errors, or minor 
be the case for most student jobs run 
teletypes, used by students, can 
students jobs rer hour on the batch 
166 jets per hour). 

bugs, whic.h 
on the batch 
provide the 
system (4000 

For large jobs on the Batch machine the froblems are different. Large 
jobs use facilities of the batch systEm that CAL TSS currently does not 
provide; e.g., access to magnetic tape, (CAL TSS has available only one 
drive foe short periods of time) and direct access to ECS. 

As far as computational efficiency is concerned, CAL TSS is quite 
competitive. For a job that is mainly CPU, it has very little 
overhead. For a job that has a lot of disk IO, it has some overhead, 
possibly about 50J. (The batch jobs will also have PPU overhead, but 
the total cost under batch is less.) 

As an example of the ability to perform large tasks on TSS, the nev 
versicn cf the system was ~ritten and debugged on the old version, and 
contains at least 50,0CC lines of COMEASS code. 

Until the system has forced disk swapfing (available late this year), 
it will not be able to run large numbers of users with large jobs. 

current_Prc:tlems 

Inability to charge for use of the system. 

This is the most sericus problem. However, the essentials of the 
accounting system should be comfleted this summer. Once this has 
been done, the system can at least begin charging for connect 
time. The ability to charge for other resources, such as CPD time 
and ECS space, can probably also be installed this summer. Since 
FCS space is the mcst precious resource of the system, it should 
be the main resource charged for. It is now possible to charge 
for permanent disk space, but no administrative procedures have 
been set up. By the end of the summer the main problems with 
charging should be administrative rather than system. 

Inconvenient access to permanent files 

this problem is caused by a number of things, one of which is the 
fact that most software was written for an earlier version of the 
system. It will be reduced when the software has been modified to 

4 



CAL TSS Report 

August 1i;71 

make use cf new facilities in this version of the system. 

No foxced disk swap 

Forced disk swap should be completed late this year. The main 
effect of its absence is a reduction in the number of simultaneous 
'heavy• use?rs th2 system can ~llffOrt; the cnr-r0 nt system cannot 
force :.1 USPt' with a. let of ECS SF<lCE to qive it uµ. Then'! are a 
numtcr of mechanisms tc encourage giving up srace, an1 they are 
used by most of the large subsystems currently available. Hovev
er, a user can write his own programs that will take space and not 
release it, as well as tyfing commands at his teletype that obtain 
space, and then not releasing it. 

Poor documentation 

The system needs three levels of documentation: a cookbook on how 
to run FORTRAN and BASIC, a description for the sophisticated 
programmer who wishes to write his cwn subsystemsr and finally an 
internal descriptica for the programmers that maintain the system. 
An attempt has been made tc produce the second level of documenta
tion, and a document is availatle at some cost from the Computer 
Center Library. A very peer ccckbook has been available for the 
last few months. A far better version is now in manuscript form 
and should be available in a month. There is practically no 
internal documentation of the new version of the system. There is 
some out-of-date documentation for the older parts of the system. 

Poor availability of teletypes 

At present there are 32 teletypes ccnnected to the machine. Only 
8 of these are available to the public, and these are the 
teletypes used by the system staff fer llfork on the system. In 
order to support a large student load there should be a reasonable 
number of publicly availatle teletypes in a small number of 
locations. Also, if there are many more teletypes connected to 
the machine than can be supforted at one time, there will be 
difficult administrative pcoblems scheduling use of these 
teletypes. 

Poor availability of the system 

The system is now up for general use between 2 PM and 6 PM 
weekdays. Between the hours of e A~ and 8 P~, 4 hours are used by 
the SCOPE system staff for maintenance of the Batch system. 4 
more hours are used by the TSS staff for development of the new 
system. Nov that uaintenance work has been moved to the new 
system, these 4 hours of TSS development should be reduced. A 
total of about 1 hour is lest in the switching of the machine 
between TSS and the SCOPR staff. 

5 



CAL TSS Report 

August 1971 

Im£rovements to be made in the Near Futur~ 

The following are changes which the !SS staff already knows hov to 
make. Scroe are in progress, all are expected by September. 

1) The charging algorithm is being implemented with obvious 
benefits. 

2) The user software (Editor, EASIC, SCOPE) is being modified to 
give more convenient access to files, making the system 
easier to use. 

3) The user software 
requirements low, 
capacity. 

is being modified to keep its swapped ECS 
which will result in an increase in 

Long-Term Im.1:.rcvements 

These improvements involve more coding than those previously mentioned, 
and it is difficult to predict when they will be available. However, 
the staff knows how to implement them; it is just a matter of time. 

1) Forced disk swapping which will enable the system to 
more large subsystems and long-running 
simultaneously .. 

support 
programs 

2) eackground access tc peripherals will make it ~asy to get 
large vclumes cf data into and cut of the system. 

3) New user subsystems and in:prcvements to old subsystems will 
continue to make the system mo:re convenient for 11ore users. 

6 



CAL TSS Report 

August 1971 

_APPENDI>:_A 

Ca_Eacity_in_Seftember 

In this appendix an attempt is roade tc predict the September capactiy 
of the system under various hypothetical conditions. The most easily 
understood description of capacity would be a statement of the number 
of logged in teletypes the system can support. Unfortunately there are 
a number of problems with this term of description. 

The fact that the system is designed to ultimately run things other 
than logged in teletypes poses a technical problem. In particular it 
is expected that it will support a background batch system. Therefore 
the calculations will involve the number of disk processes, herein 
called processes, that the system will support. Each logged in 
teletype will be representen by one process, but other processes may 
also h~ active. 

It is ccnceivable that a system with a very large number of logged on 
teletypes could be developed. However, there would be long delays in 
response to requests for service since at any given time, a large 
number of teletypes would be waiting fer the completion of a previous 
request fer service. 

Actually, having several teletypes waiting for service at one time can 
increase the efficiency of the system in at least two ways. First, if 
the requests are in fact being processed in a time-shared manner and 
are generating disk activity, then this activity will inccease the 
efficiency of the disk I/0. Second, ~ince requests will arrive fcom 
the various teletypes at random, in order to keep the computer busy 
most of the time there will be times when several requests will be 
pending. This last will net even require that the requests be serviced 
in a time-shared manner. 

Given a stable system and stable software, increasing the number of 
teletypes will have the follcwing effects. When the number is small 
and the users of these teletypes do net interfere with each other, the 
amount of useful computing will gc up linearly with the number of 
teletypes. A user at one teletype will not see a decrease in 
performance. 

As the number of teletyfes gets large enough for the users to interfere 
with one another, they will see a decline in individual performance, 
but the total amount of useful computing will still go up, although not 
as fast. Finally, the total amcunt cf ccmputing will level off. Above 
some number of teletypes there will be a small increase in utilization 
of the computer and a large increase in the total time wasted by the 
users at the teletypPs. 

7 



CAL TSS Report 

August 1971 

The numher of teletypes at which the various effects described above 
occur depen~s heavily on the use the individual usBrs are making of the 
system. At one extreme the user may only want to use the BASIC 
subsystem to write and debug a fairly simfle student type program. He 
will be spending a geed part of his time puzzling out diagnostic 
messages typed at his teletype and will be making requests for service 
at a very low rate. At the other extreme is the user with a CPO bound 
program of very large size that runs for hours. He may make only one 
request fer service, but what a request. 

It is generally assumed that the system has two broad classes of users. 
The first is exemplified by the EASIC user mentioned above, except that 
he is more experienced and makes new requests relatively soon after the 
last is finished. The second is what is called an Editor-SCOPE user. 
He is typically in one of three modes. He is either 1) constructing or 
modifying a source program using the text editor subsystem; 2) 
compiling or assembling his program; or 3) running his own program, 
either under the SCOPE SimulatoI, or as a subsystem by itself. 

When in Editor mode, the Editor-SCOPE user puts very little load on the 
system, probably less than an average BASIC user. In the other two 
modes he puts an unknown, but probatly large load on the system. Only 
experience and measurement of the system will show how service is 
affected by the presence of some given number of such users. 

The raw data used in the following capacity calculations include 
observed performance of the existing system, fixed parameters in the 
system cede, kncwn improvements in the system code that will be made 
this summer and similar irnfrovements that will occur but have not yet 
been diEccveren. 

Available ECS space is the current major limitation on the number of 
logged in teletypes. ECS space is absorbed in three general ways: 
first, by a sytem overhead independent of the number of logged in 
teletypes; second, by an overhead fer each logged in teletype, 
independent of whether that teletype is getting service or not; and 
third, by space needed for those teletypes receiving service at a given 
moment. 

The follcwing paragraphs attempt to estimate these three sizes from 
various system farametecs, and to estimate the number of logged in 
teletypes CAL TSS can support, considering ECS only. In the discussion 
all numbers are in deciroal and K stands for about 1000. Most 
parameters from the system have an accuracy between 1 part in 10 and 1 
part in 100. As these parameters were attained from the system in late 
June and early July, they de net reflect current values. The term 
"processes" refers to logged in tEletypes. Each logged in teletype 

8 



CAL TSS Report 

August 1971 

will be represented by one process, tut ether processes will exist; 
notably fer a background batch system. 

Preliminary 

The size of RCS at Eerkeley is 500K. 200K of these words have been 
dedicated by the Computer Center to the A machine. The 300K assigned 
to the B machine are divi1ed by the 1SS system into a number of pools. 
140K go into initial system overhead, the rest go into two pools that 
are divided up on a ~er process basis. 105K go into a •swapped' ECS 
pool, and 64K go into a 'fixed' ECS PCOL. The intention is that 
processes with a large amount of swapped ECS can spend part of their 
time with all of their associated swapped ECS moved onto the disk. 
(Hence the name, 'slofapped • ECS.) This swapping procedure is expected 
to be imrlemented late this yeac. 

Ini.ti al_s_ystem_Cverhead 

The 140K cf intial system overhead mentioned above is determined by 
various system pacameters, some of which will have to be changed as the 
number of processes is increased. In fact, some are probably too large 
now. The initial system overhead has a number of components, including 
system cede, teletype I/0 buffers, Feripheral device I/0 buffers and 
tables for the disk file system. 

The system code resi~ent in ECS is net expected to increase by any 
substantial amount. The teletype 1/0 tuffers consume about 80 words 
per wicPd in teletype, cf which there are now 24. Assuming that this 
will rise to 100, an additional 6K of initial overhead will be needed. 
The disk I/D buffers consume 20K. Since an analysis of disk traffic 
has not been made, it is not known whether this size is high or low. 
It is probably high. It should net have to be more than doubled with 
50 processes. Increase in the numbec of peripherals on the machine is 
not anticipated, hence no change in the reripheral I/0 buffer space. 

The tables for the disk file system, ether wise known as Disk Data 
Storage (DDS), are now 16K, and their size depends on the amount of 
swapped FCS in use. As a first afproximation the necessary size should 
grow linearly with the number of processes. In fact this is probably a 
conservative estimate since with more precesses the amount of swapped 
ECS per process should be less than now. Another consideration is the 
fact that the current amount of DDS apfears to be too high. No more 
than a third of it has ever been seen to be in use. In fact, the 
system programmers involved claim that 8K would be enough to handle the 
current lead. 

Given that the current system is capatle of supporting 15 processes, 
the follcwing estimate is made as to how the initial system overhead 
should be divided into fixed cost and per process costs. The system 
code will remain unchanged; the teletype I/0 buffers will be fixed 

g 



CAL TSS Report 

August 1971 

cost, but at 6K more than now; the possible extra 20K of disk I/0 
buffers for a total of 50 processes will be counted as .4K per process. 
The DDS, which is now 1K per process, will count as .BK per process. 
The initial system overhead, which was first given as 140K, has to be 
reduced by 16K for DDS and increased by 6K for the teletypes, leading 
to a fixed cost figure of 130K. 

Each process is now guaranteed 4K of fixed ECS. In addition there is 
4K of fixed ECS for the rare process that will need more than the 
guarantee. However, such a process has not yet been seen. At least 
one fix is known that will reduce the needed guarantee of fixed ECS to 
3.SK and it will be in by September. An optimistic estimate is that at 
least another .SK can be saved, giving 3K. 

Each process is now guaranteed J.5K cf s~apped ECS. In addition there 
is 38K cf swapped ECS held in reserve for processes that are 
momentarily doing lacge tasks, such as running the SCOPE Simulator. 
Further there is 18K of swapped ECS used to hold 'frozen' files, i.e., 
files that have been read into ECS and are held there without charge 
for all users. Examples include the cede files for BASIC, the Editor 
and the SCCPE Simulator. 

The guarantee of 3.5K was set so that all users could run BASIC oc the 
Editor. The initial version cf EASIC, as with all other software, 
stays at one fixed size once it has been called, even while waiting for 
teletype I/0. Most of the subsystems will be converted this summer to 
reduce their size while waiting for teletype I/O. Most will also be 
converted to vary their size as their needs vary in general. Once this 
has been done for BASIC, the guarantee can he reduced to that size 
which all subsystems can reach while waiting for teletype I/0, probably 
2K at the most. 

The parameter that is most difficult to estimate is the amount of 
additional swapped ECS needed tc SUFfOrt those subsystems providing 
service at the moment. First there must be a certain minimum amount of 
this additional swapped ECS to suproct the largest size that any one 
process may want to attain, which is 32K. Any additional amount will 
provide increasingly be•ter servicE tc the processes. For this 
purpose, the additional amount is best figured on a per process basis. 
At the present time, given 15 processes, the additional swapped ECS 
comes to 2.5K pee process. In fact, for the syst~m as it now exists, 
this is frobably too low. (The 1~ processes have never all been in 
active use by heavy users.) However, ~ith the subsystems reducing 
their space while waiting for teletyfe I/0, most of the use of swapped 
space will evaporate. However, again, since the BASIC users will now 
have to use this additional space whenever they are getting service, 

10 



CAL TSS Report 

August 1971 

there will be a demand that did not exist before. In what follows the 
additional swapped ECS is figured in several ways: 1} at the minimum 
to sufport the system, 32K; 2) at a small level of 1K per process; 3) 
at a moderate level of 2K per process; and U) at a large level of 4K 
pee process. To put these figures in perspective, at the small level, 
all processes could be in BASIC, with half in simultaneous execution of 
small BASIC programs, and there would be 0.2K per process left over. 

The following table represents the preceeding information and concludes 
with the calculated number of frocesses the system can support under 
various conditions. It includes the possibility of using all or some 
of the ECS now dedicated to the A machine. The table has 5 columns, 
representing conditions in late June and 4 possibilities in September. 
Included in parentheses is the hypcthetical case where the fixed ECS 
guarantee has been successfully reduced to 3K. 

Qyet.h.§2.~ 

Late 
June, 
early 
;I qJ. y 

September 
iri ni m 11 m 
additional 
fil!i!EEQQ_E;CS 

Initial 140K 130K 
Frozen 
files 
Swa12_ECS 
Total 

18K 18K 
_ _Q_ _11!5. 
158K 180K 

Per 
f£Q£g1L§ 
Disk I/0 tf 0 
DDS 0 
Fixed ECS 4K 
Swap ECS 
guarantee 3.5K 
Ada it ic n_a 1_2. SK 
Total 10.0K 

• 4 K 
.SK 

3.5K (3K) 

2.0K 
_Q_ __ 

6.7K 
(6. 2K) 

Number_cf_Processes 
Total ECS 14 18 (19) 
300K 24 32 {35) 
500K 34 47 (51) 

September 
slfall 
additional 
§J!~.E.E.§.Q_!~ 

130K 

18K 
__ Q_ 
148K 

.4K 

.8K 
3.SK (3K) 

2.0 K 
_J.!,Q.!L 
7.7K 
(7. 2K) 

18* {19) * 
32 (3!:) 
45 (49) 

September 
moderate 
additional 
2 wa,e,£ed~~~ 

130K 

18K 
__Q _ 
148K 

.4K 

.SK 
3. SK {3K) 

2.0K 
2. 0 K 
8.7K 

(8.2K) 

17 ( 18) 
29 (30} 
4 0 ( 4 2) 

September 
large 
additional 
§.!f!.12.Q~g__]CS 

130 K 

18K 
__ Q_ 
148K 

• 4K 
.SK 

3. SK (3K) 

2.0K 
4.0K 

10.7K 
{ 10. 2 K) 

1 4 ( 15) 
23 (24) 
32 { 34) 

* More thdn 1.0K of additional swapped ECS per process in order to meet 
minimum ccndition of 32K. 

11 



CAL TSS Report 

August 1<371 

~.!!!J!!~r:y of Assumed_C.han,ges 

A. An increase to 100 wired in teletypes. 
B. An increase in DDS and disk buffers to accommodate more processes. 
c. A • 5K reduct ion on guaranteed fixed ECS space per pcocess by a 

kncwn change in the system. (A possible further • SK reduction in 
guaranteed fixed ECS space fer process.) 

D. A 1.~K reduction in guaranteed swapped ECS per process. (This 
defends on mcdifications to the user software.) 

E. Some figure 0f additional s11apped ECS. (This will depend heavily 
en ns,.,r mix.) 

F. Possible additional EC~ frcm that dedicated to the A machine. 

Disk space will be the limiting factor when the system has a large 
number of users. The disk on the 6400, a 6638, comes in two 
independent halves, each with a capacity of about 8 million words. The 
B machine has one of these halves. 

Roughly 1 million words is used by the disk system itself as part of an 
algorithm designed to allow writes to occur at the current disk arm 
position. The other 7 • illion words must be divided into two groups. 
The first is temporary disk space used by a logged in teletype that 
will be released at logout time. !his space contains such things as 
the a~sembler scratch fil@s, and outfut files to he printed or examined 
with the E1itcc. The s~cond is permanent space assigned to each user 
of the ~ystem and will held such things as his source files. 

If it is assumed that the system can st1fport 50 simultaneous users for 
each 1 hour during a 10 hour day, every day of the week, then a user 
community of at least 500 users is needed. Most of these users would 
be exp?.cted to he students, with modest demands. 

One method of slicing the fie 1. C:. -. 
500 Medium tJsers 

4K words each (Enough for 
a 10 Fage FOR1RAN program 
or equivalent of 600 cards.) 

Small Number of Large Users 
40 Logged In Users 

At 32K temporary space 
10 logged In Users 

At 128K temporary space 
(will allow a~se~bly of 
very large CO~PASS frograms) 

2x106 

2x:10 6 

1.3x106 

1.3x106 

6.6x106 

12 



CAL TSS Report 

August 1971 

At the current capacity of the system as limited by ECS and with the 
current user com~unity, there is CPU time to burn. CPD time should be 
a problem at about 50 users, assuming that the same user mix continues. 
If this dces in fact turn cut to be the case, then 50 would be the 
ideal lead. The current user community is weighted towards heavy 
users, making extrapolation difficult. 

In any case, a few words about he~ much useful CPU time is delivered to 
the user. For a user performing small tasks, there is a large 
overhead, and he receives only a small percentage of directly useful 
CPU time. For large tasks the situation is different. As an 
experiment a very larqe (over 100 pages) machine language program on 
the CAL 15S and on the A machine system was assembled. One problem 
with a comparison of this sort is the multiplicity of assemblers 
available. All of them assemble essentially the same language, i.e. 
COMPASS, the original assembler on the SCOPE system provided by CDC. 

TSS system - NOMPASS 105 seccnds CPU time 
140 seconds real time (No one else on} 

A machine - CCMFASS 128 second!:: CPU time 
128 seccnds PPU time 
140 seccnds ceal time (Uo one else 
running) 

A machinP - MC~fASS 60 seconds CPU t.ime 
82 seccndE PPU time 
90 seccnds real time (No one else 
running) 

Observe that there is as much variaticn between the assemblers on the A 
machine as between the machines. (MCME~SS is thought to be the same 
assembler as NOMPASS.) Most machine language programmers on the A 
machine seem to use CCMEASS. the Time-sharing staff uses NOMPASS on 
their sys~em exclusively. 

13 



CAL TSS Report 

7lugust 1971 

!FFENQIX_g 
(Vance Vaughan) 

User Ex:~rience, _user_Ca_eacity.L and_Char_llng Users 

This aprendix presents some user experience on CAL 'ISS and introduces 
some capacity and charge rate estimates based on this experience. The 
first part gives those facts and comments which have been gleaned from 
actual user experience. The second part is more tenuous and tries to 
evaluate the capacity of TSS as ccmpared to the batch system. Finally, 
there is a section which introduces scme data relevant to determining 
an appropriate charge structure for running student jobs on TSS. 

Use r_Ex1:er ience 

Two things should he notei about user experience on CAL TSS. Namely, 
there is not very much experience because the system has not been 
available very long, and most of what experience there is has been 
obtained en early versicns of the system, i.e., it is obsolete. 
However, it is the only data availatle and has some value in defining 
what is useful about the system and what areas need improvements. 

current users of the system can be divided into three general 
categories: 

1) Very experienced and sophisticated users (including the 
system staff). 

2) students from several classes (and their instructors}. 
3) Users wit.h t.heir own dedicated lines. 

Category 1 provides a biased view (net always favorable), but some 
observaticns should be made anyhow. First, it should be noted that the 
current system itself has been develcfed on an early version of the 
system which has been in Oferation since summer '69. The interactive 
debugging capacity of the system has been very helpful, possibly 
crucial, in the developreent of the system. Most of the so-called user 
subsystems., such as the Editor, BASIC, and SCOPE, have been developed 
and debugged on the system. Thus it is a known fact that CAL TSS 
provides an environment for the implementation, debugging and operation 
of sophisticated, interactive subsystEms. Several developments of this 
sort can be and have been in progress simultaneously on the system 
without denying service to more conventional users. 

14 



CAL TSS Report 

August 1971 

Course 
Mm~ I 
CS120A 
CS120B 
CS1 
CS100 
CE298-? 

£.!Bl.£!.££ 
Fall 70 
Winter 71 
srring 71 
Spring 71 
Spring 71 

Classes_that_have_Used CAL_TSS 

Mumber 
~tu,ggn!~ 

8 
12 
60+ 

? 
? 

Language/ 
~.YlL§.Y§ t e .!!! 
SNCBCL (SC'CfE) 
SNCEOL (SCOPE) 
BASIC 
BASIC 
FCR'IBAN (SCCPE) 

Instr!:!£!.Q! 
Mrs. Gould 
Mrs. Gould 
r1rs. Gould 
Prof. Meissner 
Prof. Glassey 

The source of Category 2 experience is summarized in the table. 
following comments ace tased en teFcrts submitted by Mrs. 
covering each of her three classes and on a telephone conversation 
Prof. Glassey. I have been unable tc ccntact Prof. Meissner. 
Gould's reForts are available for ins;ection. 

The 
Gould 

with 
Mrs. 

First, the positive side. These ccmments are just the sort of thing 
that is supposed to be good about time-sharing, but it is nice to see 
that the users have noticed them. 

1) 'The students get their assignments done more quickly (in 
ter-ms of their time, rot necessarily machine time) on TSS 
than on batch. 

2) The students like Time-Sharing and generally prefer it to the 
batch mode. 

3) The instructors feel that the immediate feedback is very 
valuable to learning. 

4) The instructors note that projects are possible in the 
interactive environment which would otherwise be impossible. 

5) some students commented en the usefulness of the more 
extensive character set availatle on TSS. 

Nov, on the negative side. These comflaints are commented on point by 
point. 

1) Inadequate/non-existent documentation. This, combined with 
quirks and pcoblems of early versions of the system, has caused 
inexperienced users a let of difficulty in using the system. Prof. 
Glassey noted that whenever his students got off the specific set of 
instructions provided fer them, they were frequently unable to continue 
or recover without logging off the system. Some staff time has 
recently been diverted frcm pccgramming to preparing documents. Only 
experience will tell to what extent this documentation will alleviate 
the problems, but some improvement is inevitable. 

2) System is hard to use. As with the documentation problem, 
this stems from the fact that the staff has been too busy gluing the 
system together tc be able either to educate the user community or take 
minor wrinkles out of the system. This situation has only begun to 
ease recently, and the user interface has already improved markedly. 

15 



CAL TSS Report 

August 1971 

Actually, the student users have done su£prisingly well in the face of 
system feculiarities. 1he next rcund of students vill he spared a lot 
of the hassles which their predecessors faced and will presumably be 
even more productive. 

3) Lack of available teletypes. !his situation stems from two 
sources. One is the limited number cf teletypes which the system can 
support simultaneously and is extensively discussed elsewhere in this 
report. the other is the lack of physical teletypes where students can 
use them. The whole problem of teletypes has been clouded by 
uncertainty as to the future of the system and lack of administrative 
policy on allocating the multiplexor ports. Now that the system is 
becoming productive, these problems will have to be solved. It seems 
that for instruction purposes, it is essential that labs with a goodly 
number of teletypes be established where students can gain access to 
them. 

4) An interface to the batch system is lacking. This is part of 
a larger problem of allocating perifhecal devices among users. It is 
the same cld stcry; heavy demands on the staff by more fundamental 
parts of the system have prevented development of the peripheral 
interface beyond what is absolutely necessary foe the development of 
the system. It should be noted that ~rs. Gould developed an ad hoc 
method of getting cards punched to drive the plotter foe her 1208 
class. There are no fundamental problems here, it is only a matter of 
time and emphasis. 

5) Delayed echo of characters. Prof. Glas~ey commented that he 
was able to type fast 0 nough to cause the echo of chacac ters to fall 
behind his typing. This seems to be an inevitable consequence of the 
f u 11 du Flex mode of character t ra nsmi ssi en. some compensatory comfort 
may be derived from the confidence inspired by the fact that the echoed 
character has ccme back from the ccmputer, allowing the user to know 
that the line is not gartling what he types. 

6) Restricted hours of availability. Because the hardware has 
been used for system develcpment, both TSS and Remote Hatch, the system 
has cnly heen available to users four hours a day. TSS development 
requirements should tapEr off scon, and the possibility of scheduling 
more user hours, espEcially during the day, should be seriously 
considet:€1. 

7) Noise. ~rs. Gould notes that 4 model :n teletypes in one 
normal room create an anncying ncise level. This problem must be 
seriously considered if labs with many teletypes are to be established. 

16 



CAL TSS Report 

August 1S71 

The pioblem of comparing a time-sharing environment to a batch
processing environment is very involved. Here, questions about the 
relative merits and demerits of two environments from the user's point 
of view are ignored. Instead, an attempt is made to compare the 
capability of the two types of system to handle a given user load. No 
attempt is made to compare the perfcrmance of the two systems for all 
types of jobs, which would be very hard to do. So this is further 
restricted by defining a 'student' assignment and then estimating the 
'batch equivalent' capacity of TSS to support such student assignments. 

A student assignment is characterized as follows: 

1) The actual computing requirements are very small, only a few 
seconds of CP time. 

2) The completion of the assignment on the batch system requires 
several runs, first to remove trivial syntaK errors from the 
source code, then to remove bugs. 

Statistics such as the average number of runs required to complete an 
assignment on the batch system are not known, nor is the average time 
per assignment at the console. Thus, there are no hard figures on 
which to base a comparison of batch and time-sharing even for the 
restricted kind of use under discussion here. However, assume that in 
one hour at the teletype, a student can accomplish the same amount of 
work on an assignment as he could in fcur runs on the batch system. 
This figure has grown out of the experience of instructors and staff 
associated with student use of the system, but is impossible to justify 
precis~ly. No attempt is maJe to justify it beyond saying that it has 
consis•ently been regardea ~s ccn~ 0 rvative by evecyone with whom it has 
been di::ct:ssed. 

On the tasis of the figur9 

1 consol€ hcur = 4 batch runs, 

one can compute the batch equivalent capacity of TSS in jobs per day 
from 

jobs= 4 x number cf active teletype x hours TSS available. 

Given that TSS will suprcrt 40 active teletypes and is up 12 hours a 
day, then TSS can haadle the equivalent of 

4 x 40 x 12 = 1920 student jobs per day. 

17 



CA.L TSS Report 

August 1971 

This is astonishing, to say the least. The batch load is around 2000 
iobs fer day, up tc an cccasional high cf 4000+. 

The figure of 1920 student jobs per half day in~icates that TSS is 
highly ccmpetitive with the batch system in the processing of this kind 
of wcrk, hut the figure is so surprising and tenuous that no further 
specula t icn on its :ramifications wi 11 be made here. Experience wi 11 
provide the final answer, but at least there is reason to be 
optimistic. 

Student_Users_an~ the Charging_Algorithm 

The problem of charging for use of the machine in such a way as to 
provide best possible service at the user end while providing necessary 
revenue at the Computer Center end is many faceted. Here are publishea 
some figures on the cost of running students on the batch system, and 
some infecences about possibie charging algorithms and rates for TSS 
ace drawn. 

Figures supplied by the Computer Science Department give the cost per 
student per quarter for computer time as varying between $17 and $62, 
depending on the type of c curse. 

The exact nature of the chacging algorithm to be used for TSS is not 
yet specified, but the limited number cf teletype hours available on 
the system seems to indicate that connect time should be charged foe in 
order to avoid having access to the machine clogged up. If the 
algorithm charged only for connect time, a rate of $1-2 per hour would 
provide a healthy chunk cf time for each student based on the curcent 
figures of $17-62 per student. But on the assumption of 40 active 
teletypes, this would only provide $40-80 revenue per hour from the 
terminals. The difference between this figure and the hourly revenue 
required from the machine would have to be made up by: 

1} Charging for scme ether service, such as background batch. 
2) Charging for some ether r:escurce, perhaps CP time or ECS 

Epace. 

~his would produce additional income from other users without substan
tially increasing cost to students. 

18 



CAL TSS Report 

Auqust 1S71 

APPENDIX_C 

Status_cf_System_Code 

As the system is constructed in layers# the status of each layer will 
be discussed individually. 

ECS_S_ystem 

This is the base layer of the system. Tbe original design for this 
layer was completed in late Fall cf 1968, and the major components were 
working in Summer 1q69. In the light cf the design work for the Disk 
system in Pall 1969 and Spring 1970# some portions of the ECS system 
were re-desiqned. During 1970 some of the uncompleted components in 
the original design were completed# notably the ECS compacter. Also, 
during 1S70 some of the re-desiqred components were completed, in 
particular the new block parameter passing conventions and the paramet
er return conventions. Nearing ccmpleticn is the new call-stack logic. 
This will require some slight modification in higher levelcode, and 
hence its ccmrletion requices careful integration with the higher 
levels cf the system. Unstarted as yet is the fancy scheduler; work is 
expected to begin on it late this summer. 

Also part of the ECS system, a sort of sublayer, is the interrupt 
system, which interfaces external devices to the rest of the system. 
Modification will probatly be needed here to support more than the one 
tape drive currently supported. 1be interrupt portion of the ECS 
system bas given no trouble since summer 1970, and no work has been 
done on it since then. 

Although the ECS system has been very reliable over the last year# at 
present it has one known bug that causes system crashes, but on an 
average of less than once a month at the current load. so far there is 
insufficient information to diagnose the bug, and each time it occurs 
more code is inserted into the system to diagnose the trouble the next 
time it cccurs. 

Disk_System 

This pcrticn of the system manages disk files and directories. It 
permits a portion of a file to exist in ECS and the rest to be on the 
disk. The detailed design of this level was bequn in Fall 1969 and 
continuFd into Spring 1970. The basic ccmponents of this layer became 
operational in Spring 1~71. 1t is now in about the same state of 
completicn as the ECS level was in Summer 1969. A number of the 
components in the original design are net yet available, and some are 
present in an inccmflete ferro. The major missing component is forced 
disk swarfing., which is expected late this year. 

19 



CAL TS S Report 

August 1971 

Command frocessor 

This is the highest layer of the system that must be maintained as 
protected code. 'Ihe design was started in summer 1970 for a quick and 
dirty system expected that September. {The so-called September Sys
tem.) That design gradually evolved intc the vecsion now available. 
Most of the featuces exrected to be seen by an ordinary user ar@ now 
completed. Missing features inclune acccunting, protected subprocess 
descriptors, and the ability to construct user processes not tied to 
part icnla r telety res. 'Ihese features s hculd be completed late th is 
summer. The most difficult one is accounting and has been in progress 
several mcnths. 

User Sof.t~1.I.§ 

This tor most layer of the system is nc less important than any other 
part of the system. It is the layer that users confront most of the 
time. Since this layer of the system is not protected system code, it 
is possible for anyone to write parts of it, which has led to a very 
diffuse responsibility for this layer. Full responsibility, even for 
the necessary portions, does not lie within the project proper. 

All of the code now existing at this level was first written for an 
early ver:sion of the system. The command processor for the new system 
contains facilities to allow the old code to be run with only minor 
changes. A number of less minor changes have now become necessary for 
two reascns: ECS space control and permanent file naming. Since no 
one has overall responsibility for this code, it is difficult to get 
these changes made. 

Currently available user software includes: the SCOPE Simulator, the 
BASIC interactive compiler, the Editcr, the line printer and card 
readers, and the BCPL compiler. Some of the demonstration programs are 
also available; most were the prcducts of some computer Science 
Department classes. These include an interactive haiku program and a 
conversational psychoanalyst. 

20 



CAL TS S Re p O rt 

ll.ugust 1971 

AfPENDIX_D 

Current_Allccaticn_ef_Staff 

This appendix gives the primary assignment, by portion of system, of 
the current staff. Most of the staff will be working full-time this 
summer, but will drop back tc part-time in the fall. The figures are 
in terms of full-time equivalents for the summer. Most of the staff 
work on other projects besides their primary assignments. 

Howard ~turgis 

Director of the project. Chief architect of the command Proces
sor, but has now turned most of the coding over to two other 
programmers. He new spends most of his time supervising and 
working en overall design. This report itself has taken a 
consi~erable amount of his time ever the last few weeks. 

Vance Vaughan 

Principal task, ECS system. ether tasks include pceparation of 
documentation for users. Mcst of his time the last month was 
Epent on documentation. 

Dave Redell 

Disk system. All of his time new is spent on implementing new 
features and removing bugs. He is currently saddled with a large 
body of code which he did net write. 

Paul ~cJcnes 

Disk system and Directory system. He is the chief architect of 
the directory system. Most of the intended features of the 
directory system now work, so he is moving over to the disk system 
to help Dave Redell. Also, he spends time on the SNOBOL system 
for use on the Batch machine. 

Bill Bridge 

Command Processor. 
accounting system. 

Gene McDaniel 

Mcst cf his work is now concentrated on the 
He is chief architect of the BASIC system. 

Command Processor. Most cf his wcrk in the past has been as an 
assistant to Vance Vaughan on the ECS system, but he is now moving 
over to replace Howard Sturgis en the Command Processor. Most of 
his work in the near future will involve improvements to help with 

21 



CAL TSS Report 

August 1971 

the maintenance of the system, such as the ability to construct 
slave test u~er precesses. 

Keith Standiford 

External I/0. He is the chief architect of the disk dump, load 
an1 recover package. He is now working on numerous small packages 
to help with system maintenance. 

22 



August 1971 

APfENDil_E 

current_Prcjects 

CA!. TSS Report 

The follcwing is a list of projects now under way, or which will begin 
sometime this summer. 

All existing user software must be converted to control its use of 
swapfed ECS space since it was originally written for an early version 
of the system in which such central was not possible. Swapping ECS 
space is the major factor which will determine how many users 
performing non-trivial tasks the system can support at one time. Since 
there is no one person directly respcnsitle for all of this software, 
the ccnversion is a slow process. 

New Naming_Conventions 

A 11 ex is t i n g so ft w a re , w h i ch w a s w r i t t.e n for an ear 1 i er sys t em w i th 
different conventions, must be converted to use the new naming 
conventions. In crder to provide reasonable access to permanent files, 
the software must be changed to use the new conventions. 

BASIC Editor 

BASIC now uses a version of the system text editor. This editor uses 
different conventions frcm the editors available in most BASIC systems. 
In fact the current BASIC system executes statements in order of their 
beginning line number, rather than their order in the text which 
results in a very confusing situation. A new editor will be written 
for BASIC that will be similar to other EASICs. 

The above were all projects at the user software level; the following 
are projects at the system level. 

A.ccountin.9 

It is necessary tc charge usPrs fer tne use of the system. At present 
this is net done. During construction of the lower levels of the 
system a number cf facilities were installed to be used by the 
projected accounting system. lhese facilities generally accumulate 
local charges of various scrts, e.g., swarped ECS space-time. 

A full scale accounting system is being written which will: 1) 
maintain within the system a running tctal of remaining funds for each 
user; 2) appropriatelydecrement theEe totals at the end of each 
teletype session; and 3) record the resources used by the user for this 
session in a transaction file which will te used by the Computer Center 
accounting staff to send a reccrd of use cf the system to each user. 

23 



CAL TSS Report 

August 1971 

Disk Sl@ce_Control 

At present the system is unable tc control the use of the disk for 
either temforary files or rermanent files. This space control should 
be in effect early this summer. At that time it will become possible 
to charge individual users foe files kept permanently on the disk. 
(Comrleted as of 7/26/71 at the disk system level. The Command 
processor now uses this facility to central permanent files.) 

ECS S_ystem_Call Stack Logic 

A process is compcsed of a number of subFrocesses that can call one 
another, passing and returning paramete:rs. A number of imperfections 
were discovered in the original design, and a redesign was done last 
summer. The new version should be available late this summer. Since 
this change will entail changes in the code in higher layers, it can 
not be turned on until the old EEAD system is finally removed and the 
appropriate changes in the new system have been completed. These 
changes are thought to be minor. 

rancy ECS System Scheduler 

In order to perreit processes ~ith a small amount of processing to get 
good service, a fancy scheduler fer the ECS system was designed at the 
beginning of the project but has never been implemented due to other 
projects of greater impcrtance. work should begin on this scheduler 
late this summer and be completed late this year. As the load on the 
system increases, the scheduler becomes cf greater importance since it 
essentially provides the character by character interaction ability of 
the system. 

Forced Disk_Swa.12.Ein.9 

Programs exist which will ccmpute for long times between teletype 
interacticns. These programs will hold large amounts of ECS while 
computing, thus preventing mere intecactive programs which have 
released space from continuing. The forced disk swap is the system's 
method cf preventing this situation. work on this facility will begin 
this summer and should be completed late this year. 

Movi!lll. Sygtem Maintenance to New_System 

Most system work is now done on the old BEAD system. A move to the new 
system has been postponed for various reasons. At present the last 
obstacle is the lack of disk space control, but as soon as that is 
working the move will be made. (This is an obstacle because when disk 
space control is turned on, usec directories must be remade and files 
moved frcrn old directories to new ones. The fewer files that have to 
be moved the better.) The only sense in which this is a project is 

24 



CAL TSS Report 

August 1971 

that it vill take some time and scme reorganization of procedures. 
(CompletEa as of 7/26/71.) 

Numerous_Internal_S1.§.tem_Projects 

Besides the projects described abcve, there ~re a number of individual
ly small rrojects under way to imfrove various characteristics of 
maintenance of the system. One such project is to vrite user software 
for the new system to perform various tasks needed in the maintenance 
of the system, e.g., a program to construct a dead start system tape 
and a program to allov examination of pest mortem tape dumps taken 
after system crashes or while testing new system code. Another project 
is to permit the construction of user frocesses containing new pieces 
of system code for test. It is expected that several system program
mers could be testinq new code in quite different sections of the 
system at the same time and independently. One more project is to 
permit the examination, on the fly, of the system part of a user 
process that has hung up and is nc longer listening to the teletype. 
(These last two projects will prcvide most of the system features 
needed to implement the proposed tatch system; see Appendix F, Future 
Projects.) 

The dead start system tape prograr and the post mortem dump tape 
examinaticn program have been ccmpleted as of 7/26/71. 

25 



CAL TS S Repo r:t 

August 1971 

APPENDIX_! 

Possible_Future_Prcjects 

There ar:e a number of projects which have been discussed, but for which 
no work is contemrlated in the immediate future, i.e., this summer. 

Tri vial_User_Mode 

Currently when a user logs in, he immediately acquires quite a lot of 
machinery to handle his requests for service. This machinery is 
assigned to him from the time he logs in to the time he logs out. If 
he is performing a large task, such as running the SCOPE Simuldtor, the 
machinery is a small rart of his cost. When he is doing small tasks, 
such as editing, the machinery amounts tc about half of his costs. 
When he is doing nothing, the ccst is encrmous. 

It has been proposed tc introduce into the system a new state, Trivial 
User Mode, in which the costs per user are very small. It has also 
been suggested that scme small tasks could even be performed in this 
state by multiplexing them through a larger, special pseudo-user. 

This mode would be introduced at the ccmmand processor level in the 
system, thus involving nc changes at the fundamental levels. It is 
estimated that it may require 6 man months to implement. 

This mode will greatly increase the number of simultaneous users, while 
reducing the power of the rnach i ne for: these users in the trivia 1 mode. 
It is in this way that KRONOS, for example, attains its large number of 
simultaneous users. 

The main objection to this fI:Ofcsal is that it destroys the concepts of 
an individual process handling services for an individual user, thus 
allowing the writing of user software without having to consider 
multiplexing users. It will te possible foe users to write their own 
software which multiplexes users and test it without system Programmer 
intervention. 

Backgrcuna_satch _ _g_yst.em 

The major problem with the current version of the system is that it 
sits idle for most of the time. there are a number of ways to get more 
useful time cut of it. 1he first is to increase the number of 
simultaneous users. 

There arE two froblems with this apfroach: one is that the system 
itself needs much improvement to increase the number it can log in; the 
second froblem is that since users will make essentially random 
requests for service, in order to have the machine busy for all but a 
tiny fraction of time, it roust have many users waiting for services 

26 



CAL TSS Report 

August 1S71 

most of the time. Cne crude calculation indicated that to have the 
machine busy 90% of the time reguired that the average number of users 
waiting for service at a given time wculd be about 10. 

One way to keeF the machine busy without this effect is to have 
something in the •background• to run ~hen no console user is requesting 
service. It has been proposed that this background be a Batch System 
to run jobs read in at a cacd reader. A method for implementation of 
this Batch System has been froposed that requires no changes to the 
fundamental levels of the system, but requires some new facilities at 
the command processor level, which shculd be available at the end of 
summer, as they are also needed for improved maintenance of the system 
itself. These facilities basically ccnsist of the ability for a user 
process to construct slave user frocesses. Once these have been 
implemented, the rest of the work will be at the user software level. 

At the mcment there ace two undesiratle side effects of the Batch 
System. Since the fancy ECS scheduler has not yet been implemented, 
all users will see a degradation in the character by character response 
of the system, which is seen by all users, since it is used by the line 
collector on all control characters. Second, since forced disk 
swapping is not yet installed, the Batch system will occupy an 
essentially constant amount of ECS, whether running or not, thus 
decreasing the maximum number of loggEd in teletypes. 

New Language_Processors 

At the rooment, all of CAL TSS's language processors, except BASIC and 
BCPL, run under the SCOPE Simulator, including the processors most 
heavily used by 'heavy• users: COrPASS, FORTRAN, SNOBOL. There are 
two tad effects of this arrangement. The first is that these 
processors are not re-entrant; each user has to supply ECS space to 
hold his own copy of the one he is using. Second, the SCOPE Simulator 
is in itself an expensive subsystem tc run. 

For the mcst frequently used processors, it is hoped that a new version 
could be written that would be re-e~trant. In fact, at the beginning 
of the prcject, a small amcunt of time was spent in looking at the RUN 
FORTRAN Compiler, to estimate how difficult this would be. There are 
two parts to the problem. The first is to make the code of the 
compiler re-entrant. This was thought not to be difficultr since it 
would be easy to collect all the writable data areas in one or two 
areas, and the only ether task was to handle the use of the RJ 
instruction, which would also be easy with the introduction of an 
internal transfer vector in writable area. The second part of the 
problem is to handle file rn. 1his is mere difficult, and the proposed 
solution is to construct a cut down version of the SCOPE Simulator that 
supplies the SCOPE IO to facilities. 

27 



CAL ·:rs s Report 

August 1971 

Floati!.19 Line_Pririter_and card_Ileader_trivers 

The present line printer and card reader driver software requires that 
the user TTY wait while the printing er reading is in progress. It has 
been profosed that flcating processes be constructed to handle these 
functions so that a user's TTY would be freed for other tasks. This 
facility could very easily be incorrocated in the proposed batch 
facility, and is rrcbably the best way tc go. 

The original conception of the system included facilities to permit 
individuals to write their cwn rrcgrams for driving the peripheral 
devices. One of the advantages derived from this concept is that it 
would not be necessary to write drivers that could handle all possible 
needs. The system would only have to handle the usual cases. The ECS 
system is so designed that CAL TSS can hand out capabilities for a 
given device and taken them away later:. The necessary code must yet be 
designed and written at the command pr:ccessor level to allocate the 
devices to individual frocesses. (The current system assumes that the 
code in the individual frocesses for driving peripheral devices is 
friendly.) 

File Ccmmunication with_the A_Machine 

users need a means of transfering rrograms to and from the A machine 
Batch System, for example, in crder tc debug a program on ~ss and then 
run production en the Batch System. At present this transfer is 
accomflished by the use of magnetic tape, but is unsatisfactory for 
several reasons. First, TSS tape handling conventions are primitive at 
present. Second, the system has available only one tape drive, which 
will prcbably be needed for some kind of file archival system. Third, 
there is insufficient operator support to handle a large amount of tape 
mounting and demounting. 

Therefore, some way to copy fil€s t:Etween the two systems without 
having to go tc scme outside medium is needed. The original system 
proposal was to use a channel coupler between the two machines and have 
appropriate PPU programs in the two machines to transfer the files. In 
order to save money, the channel coupler was not obtained. A more 
recent proposal envisions that the transfer be done in some common pact 
of ECS. !his will probably be a slow transfer since it requires the 
monitcring of the transfer by the system code. (There is no way for 
one machine to interrupt the ether.) The system will be able to 
monitor the transfer at scme regular interval, say about once every 10 
milliseccrds. If a sufficiently large block of data can be transfered 

28 



CAL TS S Report 

August 1971 

at enc tin0, a ceasondbl~ transfer cate should be attainable. 

?ile Acchiyal_~~stew 

one of the major limitaticns on the size of the CAL TSS user community 
will be the total size of files that it can hold on a permanent basis. 
At present these files are all held en the disk, a relatively small 
storage device. Cne obvious solution is to require users to hold their 
files en rragnetic tape, but again, this ~ould put an intolerable burden 
on the operators fer mounting and demcunting tapes. 

proposed tcluticn tc this problem is tc Fermit users to 'Archive• their 
files. All archived files would be written successively on the same 
reel of magnetic tape, thus reducing the tape mounting costs. Requests 
to retrieve files would be collected over some time interval, in hopes 
that several requests could be ~atisfied by a single tape mounting. 

The system was designed with the intenticn that, after it was running 
successfully, these parts which proved inefficient could later be 
rewritten to run faster. For example, tbe ECS system contains many 
objects and about 100 actions en those objects, but most of the time 
spent in the ECS system probably involves only about 10 actions. With 
a degree of concentration on these actions a substantial reduction in 
overhead should be realized. Si[ilarly, the disk system currently 
invclves 3 subprocesses that call each other. This arrangement paid 
off in ease cf construction and debugging, but now these 3 subprocesses 
can be combined into one, thus eliminating the inter-subprocess call 
time, a substantial saving. Finally, it was originally intended to 
supply scme form cf direct access to ECS. when this has been providedr 
the disk system code can be easily modified to take advantage of this 
feature tc reduce its overhead by possibly one-half. In fact, the disk 
system was written with this modification in mind, and will require 
only small changes in its code. 

The comtination of all cf the above changes should reduce system 
overhead ty about one half. 

29 


	Appendices
	A. Capacity in September
	B. User experience, user capacity, and charging users
	C. Status of system code
	D. Current allocation of staff
	E. Current projects
	F. Possible future projects



