
VERS Manual

Version 4

Jay Earley

Paul Caizergues

Computer Science Department

University of California, Berkeley

October 1971

Table of Contents

Page

I. A. Introduction to V-graphs 2
B. Introduction to VERS 11

II. VERS Reference Manual 15

A. Syntax Conventions 15
B. Conments and Continuation Lines 16
C. Naming Structure 16
D. Basic Objects and Declarations 17
E. Primitive Routines 22
F. Defined Routines 26
G. Statement and Expression Syntax 29
H. Predeclared Objects 32
I. Conmands and Monitoring 33
J. Execution Control 36
K. Library Routines 38

Appendix A. Hints and Warnings 39
B. VERS Syntax 40

Introduction

This document contains all the information necessary for the under

standing and use of the progra111T1ing language VERS (for versatile) as it

exists on the CAL 6400 Time Sharing System. VERS is an interactive language

for manipulating complex data structures. It is intended to be useful

because of the generality and semantic clarity of its data structures.

The system is completed and ready for use. For further information

on the system or consulting on its use, contact Jay Earley, 507 Evans,

{64)2-1879.

The current system is rather inefficient in both time and space.

This is because (1) VERS is implemented by an interpreter, and (2) it

makes no effort to pick a good internal representation for the user data

structures. We intend to remedy these problems by addtng to the VERS

system a compiler which uses an "implementation facility." See [l] for

the ideas behind this.

Reference [2] describes part of the current implementation of VERS.

[1] Earley, Jay. "Toward an Understanding of Data Structures." Comm. ACM,
October 1971.

[2] Earley, Jay and Caizergues, Paul. 11A Method for Incrementally Compiling
Languages with Nested Statement Structure," Computer Science Department,
University of California, Berkeley, 1971.

- 2 -

PART I

'i Introduction to V-graphs

The most important feature of VERS is its data structures. These are

· designed with the idea of distinguishing very carefully between semantics

and implementation. The semantics of a data structure is the essential

meaning of how its data is stored, how it is accessed, and how the structure
' .

may be changed. It is often a model of a situation or structure in the real

world. The implementation is how this semantics is realized in a machine.

Another way of looking at it is that semantic~ is a description in which

all the extraneous detail has been omitted. What is _extraneous depends, of

course, on the purpose of the description, but this is as it should be.

VERS deals with the semantics of data structures. It represents them

as directed graphs with names on the edges (called V-graphs). Each node of

the graph represents a part of the data structure. The arrows between nodes

represent access paths in the structure, and arrows from nodes to "atoms"

represent the fact that the atom is stored at the node. Thus, a linked

list of the atoms 10, 20, and 30 might be represented as follows:

NEXT NEXT NEXT r.;~ ,---@

CONT CONT

10 20 30

The graphs have the further property that there is at most one link

fro~ any node with a given name. Thus,

0

0

- 3 -

is illegal, so that when one is at a certain node, any given link name

selects a unique access path from that node; consequently we call these

"selectors". In the above example NEXT and CONT are not reserved words

in any sense; we could have just as easily used any two distinct strings

in their place. UND, however, is a special reserved object which can be

used for such things as the end of a list.

The following is a more precise definition of V-graphs: There are

three kinds of objects~- nodes, links, and atoms. There are an infinite

number of atoms and an arbitrarily large number of nodes and links. Atoms

are objects which have no parts that can be examined or changed as such.

Only tests and operations on atoms as wholes are allowed (such as "="

_or 11 +11). Nodes have no intrinsic meaning. All their meaning is derived

from the structural and access relationships represented by the links.

Each node may have an arbitrary number of links from it and .D.Q. two links

from the same node may have the same name.

We can represent an array of numbers (7,3,5,6,18) which are accessed

by subscript only as follows:

6

. Figure 1

The crucial feature about V-graphs is that they represent the set of data

and the way it will be accessed, not necessarily the way it is implemented.

-,-------- --- -------~~~

- 4 -

Thus, 1if -our list elements 10, 20, 30 can be accessed by ordinal number

as well as by the "next" operation, then we might represent them as follows:

1~ __ c_oo_T __ ~ 10

}

;· 30

Figure 2

. In addition, if there is a "prior" operation available, we would draw

in the inverses of the NEXT links and name them PRIOR. It should be clear

at ·this point that we look at a data structure as more than just a set

of atoms in some relationship to each other. The way in which the atoms

are accessed is an intrinsic part of the data structure. Thus, for

instance, an ordered set can be many different data structures depending

on the way its members are accessed.

The following graph represents a complex number 3.7 + 2i as a

· pair of reals:

2
3.7

- 5 -

There are exactly five objects in this graph, and each one represents an
'

essential part of the data structure. The node represents the pair itself,

the two links represent the "left-hand values" or references to

the members of the pair, and the two atoms represent ·the values of the member'.,

of the pair. This correspondence between objects in the V-graph and intuitive

notions about the data structure is what gives V-graphs the capability of

describing semantics.

As one might expect, we can represent a binary tree (as in LISP)

as follows:

A

A A

Here we have chosen L and R instead of CAR and CDR; the A's are

atoms. In this example as in the linked list, links in the graph will

most likely correspond to pointers in an implementation, but this is

definitely not the case in general. The number links in our array

example (Figure 1) certainly do not represent pointers, nor do the NEXT

links in the list-array example (Figure 2), if we store it contiguously

in core. In fact, the fundamental idea behind V-graphs is that the links

may represent various things at the machine level depending on how one

chooses to implement the graph. A link may represent a pointer, an indexing

operatipn, contiguity in memory, or even an entire search algorithm. This

last case is illustrated by the following _example.

-----~ __ , ____ ----------------------·-·--~-----------------------

.- 6 -

This graph represents a symbol table in which the identifiers Xl, SUM,

and J have been entered. Each. symbol has a location and a type associated

with it.

1000

REAL

J
LOC 2000

PROCEDURE
1002

TYPE

INTEGER

Notice that the Xl, SUM, and J links may be implemented by some kind

of search algorithm while the LOC and TYPE links will probably jus~

be fields within a block of storage. Nevertheless, all these links really

do represent access paths to the data, and that is why they are _present

in the graph.

We often work with data structures which are naturally hierarchical

and so we would like to reflect this in V-graphs. This can be done without

/

- 7 -

adding any mechanism by simply using a certain selector (such as CONT) to

represent the idea of sub structure. Thus a list of lists might be represented

as follows:

((1,2,3),20,(100),({4,5,6},12)}

NEXT

CONT
20 Q

·~ 0 _N_EX_T --o->®i!~ONT
icoNT icoNT icONT ,, O
1 2 3

Q-->(@
!CONT

,-...-..-......-0->®

CONT

tcONT
12

NEXT Q--:;,.,:;., @:

torn
6

For reasomwhich will become clearer later, each node and each atom

has a type chosen from a finite set of types. There are some standard

atom·types: integer, Boolean, string, type, etc .• In general, a link in

a V-graph can link to any object -- node, atom, or link. The reason for

including links in this category is that one would like to be able to mani

pulate references (links) just like any other object, and this necessitates

the ability to link to them.

The following primitives exist for manipulating V-graphs. OBJECT

stands for ATOM, NODE, or LINK.

_ FOLLOW (SELECTOR A, NODE N) = LINK

This produces as a result the link from node N named A. It is an error if

the link does not exist.

- 8 -

STORE(LINK L, OBJECT Q) = Q

This causes link L to link to Q.

CONTENTS(LINK L) = OBJECT

This produces as a result the object pointed to by link L.

ATTACH(SELECTOR A, NODE N) = LINK

This creates a· link from N named A and produces it as a result. It

is an error if a similarly named link already exists.

DETACH(SELECTOR A, NODE N)

This deletes the link named A from N if it exists. It is an error if

it doesn't.

TEST(SELECTOR A, NODE N) = BOOLEAN

This returns TRUE if a link named A exits from N and FALSE otherwise.

CREATE(TYPE T) = NODE

This creates a node of type T and produces it as a result.

SEL(NODE N) = sequence of SELECTOR's

This produces as a result _the sequen~e of selectors of the currently existing

links from node N.

TYPE(OBJECT Q) = TYPE

This produces as a result the type of Q.

KIND(OBJECT Q) = TYPE

This produces as a result ATOM, NODE, or LINK, depending on which

kind of object Q is.

EQ(OBJECT P, OBJECT Q) = BOOLEAN

Unless P and Q are nodes, this returns TRUE if P and Q are the

same object and FALSE otherwise. If they are nodes, it may _be more

- 9 -

complicated, as is explained below.

We have not yet specified what may be used as a SELECTOR, though we

have used only atoms in our examples. We now present examples where nodes

are used as selectors:

Consider how to represent a finite set as a V-graph. A finite set

of atoms q1, ... ,qn can be represented as follows:

NIL

NIL

Adding an element to the set is done with TEST and ATTACH, deleting an

element with DETACH, testing for set membership with TEST, and generating

the elements of the set with SEL. However, if we want to represent a

set of data structures, such as a set of pairs, we must allow nodes to be

link names and then use the header node of each pair in place of the q.
1

above.

Consider how to represent a two-dimensional array as a V-graph. One

might think of the following for an nxn array:

--- --- --- ----

- 10 -

R

R

But this has some extra structure which is not really there. i.e. are we

selecting rows:or columns first? Do those circular nodes really represent

meaningful entities? Of course, they might, if we want our semantics to

allow. for the manipulation of rows or columns as units. But suppose we don't.

A better representation would be obtained by using ordered pairs as selectors:

R

~ .
• ::s •

' _, R
V

R R

- 11 -

So in general, in order to be able to represent n-dimensional arrays, we

· need to be able to use ordered n-tuples as selectors. But these are data

structures themselves:

I

so we can do this by using the header node of the n-tuple as the link name.

However, this means that the EQUALS primitive must act different on such

nodes. It must have the property that two different pair nodes which both

represent the pair <l,2>, for instance, must be equal. This means that

if one does an ATTACH with one pair node and a FOLLOW with the other

he will get the right link. For this purpose some node types are designated

"separate" so that two such nodes are equal only if their components are equal.

B. Introduction to VERS

In VERS there are basically two categories of objects -- a fixed number

of "static" objects whose names can be written in a program, and an arbitrary

number of "dynamic" objects which are created by the program at run-time

and may be referenced only through the static objects. Thus there are static

and dynamic varieties of nodes, links, and atoms. Static nodes are headers

for data structures whose identity cannot be changed by the progra~. (The

symbol table header is an example of this.) Dynamic nodes are created by

the CREATE primitive and are parts of data structures which can be altered

(such as stack element nodes). They may be referenced only through links.

Static links are links which do not come from nodes, but have an existence

of their own. These are analogous to variables in other languages. The

~-------------~ ---

- 12 -

links emanating from nodes are dynamic and represent access-paths in the

data structure. Similarly, a static atom is a constant, and a dynamic atom
,

is the value of a variable or a value stored in a data structure.

Now we illustrate how node types are declared in VERS. The "list

element" node type is declared as follows:

TYPE LISTEL IS .--
N TO LISTEL
C TO ANY

This specifies that.there are two allowable selectors from a LISTEL node,

N and C. N names links which may point to other LISTEL nodes, and C

names links which may point to anything (ANY)~ Here we have underlined the

keywords which are built into VERS. We also need to declare a "sequence"

node type. Sequences are used frequently in VERS for ordered collections

'lf things. A sequence has the following general fonn:

C C C

'

where the round nodes are LISTEL's. The sequence node type is declared as

follows:

TYPE SEQ li .
FIRST TO LISTEL
LAST TO LI STEL

- 13 -

We wi 11 now write a VERS routine to take as input a ,sequenc~ of integers

and return the sum as its result.

ROUTINE SUM(S TO SEQ) TO INTEGER ll
LINK PTO LISTEL
RESULT+ 0

P + FIRST OF S

IF P = UND THEN RETURN
LOOP: RESULT+ RESULT+ C OF P

IF P = LAST OF S THEN RETURN
P + N OF P

GO TO LOOP
ENO

S is the fonnal parameter. It is a static link which may point to SEQ's.

•In addition, there is one declared static link, P, which can point to·

LISTEL's, and one implicit stat_ic link RESULT, which can point to INTEGER's

since that is the type of the routine. All three of these are local to SUM.

11+ 11 stands for STORE, and "OF" stands for FOLLOW. We have set it up

so that the CONTENT~ primitive does not have to be written explicitly in

most.cases. When a link is generated by FOLLOW or ATTACH or by using

· ·a static link, its contents is automatically taken unless it is suppressed.
It may be suppressed explicitly by using the special operator @ or impli-
citly in certain contexts (see section 11.F). -

There ~s a FOR statement in VERS which works on sequences. It stores

into the controlled variable the successive values of the C links of the

sequence. Using this, we can rewrite SUM as follows:

ROUTINE SUM(S TO SEQ) TO INTEGER Ji
LINK I TO INTEGER
RESULT+ 0

FOR I+ INS DO RESULT+ RESULT+ I - - ----
END

'

- 14 -

In these two examples, we have used FOR and IF statements which are

contained entirely on a single line. ~e also allow versions of- these which

continue over many lines and can be nested (see II. G).

used.

Our next example shows how the symbol table node is declared and

TYPE TABLE~
[STRING] TO INFO

TYPE INFO IS
LOC TO INTEGER
TYP TO STRING

. In all the previous examples the set of possible selectors from a node was

finite. [STRING] specifies that any number of links can be attached to .
. .

TABLE, but they must all be selected by objects of type STRING. Now· if

we ·want to enter a symbol S in a table T, it is done as follows:

ATTACH(S,T) + CREATE(INFO)

If we want to set the LOC of S to an address H, we ·code

LOC OF SOFT+ H
--

_To look up the TYP of S:

TYP OF S OF T \

Finally to print all the symbols in the table:

FORS +..lliSEL(T) DO PRINT(S)

We continue now with examples illustrating other features of VERS:

There is a second kind of FOR statement which can be used to get the

effect of numerical FOR statements as in Algol, arid for other purposes.

The ·following program prints out the largest value in a vector of 100 posi

tive int~gers. First we declare a node type to represent the vector:

------~----- - --~------ ------~----~~-----------------

- 14a -

TYPE VECTORlOO IS
1 THRU 100 TO INTEGER

Then the routine is as follows:

ROUTINE LARGEST(V TO VECTORlOO) TO INTEGER _!i

LINK I TO INTEGER
RESULT+ 0
FOR I+ l, l+l WHILE I~ 100 DO
.!.[V[l]>RESULT THEN RESULT+ I
ENDFOR
END

Here "V[I]" is just another way of writing "I OF V. 11 Notice that we have

used a FOR statement format which extends over several lines. This is

signified by the fact that there is ,nothing following the 00 in the FOR

header. The body of the FOR statement is terminated by ENDFOR, which

must be on a separate line. Either format for FOR statements (single

line or multi-line) may be used with either kind of FOR statement. There

is a similar multi-line format for IF statements.

We can also use this second kind of FOR statement to move through

a sequence, generating the elements instead of the values. For instance,

if we know that the sequence ends with UNO, we write

LINK L TO LISTEL -- -
LINK S TO SEQ
FOR L + FIRST OF S, N OF L WHILE L# UNO DO body

Here 11 #11 stands for "not equal". This assigns to L the successive

LISTEL's of the sequence, and tenninates when L becanes UNO.

Primitive forms of input and output are provided in the form of routines

PRINT and READ, PRINT takes a string as input and prints it at the

teletype. READ returns control to the teletype, collects a line, and

-------------- --------

- 14b -

returns it as a:string. The following example program reads lines from a

teletype continuously until it finds one consisting of the word "LOOK".

It then prints "FOUND" and terminates.

ROUTINE FIND() ~
LOOP: .!f. READ() = 11 LOOK11 THEN PRINT(11 FOUND11); RETURN
GOTO LOOP
END

Notice that this IF statement has two statements in its scope. In

general, more than one statement may be placed on a line if they are sepa

rated by 11 ; 111 s. However, only one IF or FOR statement may be placed

on a line, and its scope is the entire remainder of the line. See II.G

for the exact syntax.

The primitive NAME is provided for use with PRINT. It converts

any object into a string so that it may be printed. Examples:

code erinted

PRINT(NAME(3)) 3

A+ TRUE; PRINT(NAME(A)) TRUE

A+ 1; PRINT(NAME(@A)) A

A+ CREATE(SEQ); PRINT(NAME(A)) NODE

PRINT(11 A11 & 11 BC 11) ABC

A is a 1 ink. If it is used without the @, its contents are input to

NAME, otherwise the link itself is. This explains the difference

between lines 2 and 3 above. (This is a property of 11 @11 , not of NAME.)

In line 4, the node which is the contents of A is dynamic and therefore

·has no name, so VERS prints "NODE". In line 5, 11 &11 is the string

concatenation operator.

- 14c -

These primitives will be useful in writing detailed 1/0 routines for

completed programs. We also provide two library routines, Pl and P2

which should be especially useful for debugging. Each of t.hese prints

out any VERS object (including the entire graph structure that can be

accessed from a node or link) in a given fonnat. See section 11.K for

details.

Scopes of names are controlled by "data blocks" as well as routines

in VERS. A data block is a collection of global declarations. Associated

with each data block is a list of the routines which may use declarations

from this block. Routines are not nested within each other, so that the

only names global to a routine are those found in data blocks which con

tain it. In the example below we have one data block and a routine which

it contains. In a larger program, the data block would contain other

routines as well. In addition a routine may be contained in several data

blocks.

We now present a more complete and practical example of a VERS program.

The program deals with a BNF granmar, and a knowledge of BNF is assumed

here. We will represent each symbol in the grammar (terminal and non

terminal) as a STRING. Each non-terminal will map onto a set of its

alternatives using a GRAM node, as follows:

TYPE GRAM IS -- -
[STRING] TO NON.TERM+ CREATE(NON.TERM)

Illi NON.TERM IS
[SEQ] TO NULL

Here we have a node of type GRAM representing the grammar. It will

have one link for each non-terminal N, named by the string which is the

name of N and linking to a node of type NON.TERM. NON.TERM nodes

------- ---~-- - -------

- 14d -

represent sets, in this case sets of SEQ's, because each alternative is

a sequence of strings. In general, the best way to represent a set in

VERS is as a node with links which point to UND (undefined), where the

selectors are the elements of the set. Thus a general set would be

TYPE SET IS
[ANY] TO NULL - ---

We use NULL here because UND is of type NULL.

The 11+ CREATE(NON.TERM) 11 indicates that whenever a link of this

kind is attached to a GRAM node that it is to be initialized to a newly

created NON.TERM node. A static link may also be given an initial value

in the same way. Any link which is not initialized in this way will be

set to UND when it is created.

Notice that the representation we have chosen for the grammar make

explicit exactly those access paths which we need and leaves out details

of implementation which are not essential:

(1) There is a way to get from a non-terminal to its set of alternatives.

(2) It is clear that the alternatives are a set (unordered) and the

symbols within an alternative are a sequence (ordered).

The routine we are going to write will take as input a symbol C

and output the set of all terminals which can begin some derivation from

C. The output will simply be C, if it is terminal; and if it is non

tenninal, it will call itself recursively on the first symbol of each

alternative of C.

The complete program is as follows:

DATA IN BEG
TYPE NON.TERM IS

[SEQ] TO NULL

- 14e -

TYPE GRAM IS
[STRING] TO NON.TERM+ CREATE(NON.TERM)

GRAM G
TYPE TERM.SET IS

[STRING] TO NULL
END
ROUTINE BEG(CH TO STRING) TO TERM.SET~
LINK NT TO NON.TERM -- -
LINK ALT TO SEQ
LINK T TO STRING -- -
RESULT+ CREATE(TERM.SET)
NT + (CH OF G)\ TERM
FOR ALT + _!!! SEL(NT) DO
FORT+.!!! SEL(BEG(C OF FIRST OF ALT)) DO
ATTACH(T,RESULT)
ENDFOR
ENDFOR
RETURN
TERM: ATTACH(CH,RESULT)
END

In line 6, "GRAM G11 declares G to be a static node of type GRAM.

In line 15, we introduce the use of "error returns" in VERS. The idea

is as follows: Any call on a primitive routine may be followed by 11 \LABEL 11 •

This means that if the routine gets an error, instead of halting execution

and printing an error message, we execute a GOTO LABEL. In this particular

example, the primitive is FOLLOW, and it will get an error if the selector

doesn't exist. That is, if CH is a terminal, the selector will not

exist and we will branch to label TERM. We could have equivalently

written that line

IF CH FROM G THEN NT+ CH OF G ELSE GOTO TERM

- --r -------

- l4f -

Here "FROM" calls the primitive "TEST".

This error return feature is extended to programmer defined routines

as follows. There is a special label "ERROR" which a routine may branch

to. This causes a return from the routine and a branch to its error label,

if its call has written using "\LABEL", and an error message if it was not.

Interactive control of VERS programs is partly achieved by using

BREAK, CONT, and SET. BREAK is a special label which causes control

to return to the teletype. Breaks may also be caused implicitly by setting

traps on statements or links. CONT is used to continue from a break or

a trap. For example, suppose we have entered the following VERS program:

ROUTINE R() Ji
LINK B
PRINT(11 111)

GOTO BREAK
L: PRINT(11 211)

B + 3

PRINT(NAME(B))
END

-A session with this program might go as follows:

+ R()

l

BREAK AT R+3
+SET L
+CONT
BREAK AT L
+SET B
+CONT
2
BREAK AT L+l
+CONT
3

+

--~r- ---- -------

- 14g -

The 11 +11 is a prompt character printed out by VERS when it is waiting

for input from the user, so every 1 i ne beginning with 11 +11 was typed by

the user and every other line was printed by VERS. SET L puts a trap on

the line labeled L, so that every time that line is executed a break

will occur. SET B puts a trap on link B, so that every time it is

stored into a trap occurs.

During a break, the user may execute any statement in VERS as an

immediate statement by simply leaving the first column blank and typing the

statement. It is then executed as if it were in the current routine. This

can be used to look at data or change values of data, or to call other

routines, or to resume execution by executing a GOTO to a place in the

current routine.

Detection of errors during execution also produces a break (along

with a messag~). The only difference here is that CONT may not be used

to continue after an error (because its not always clear what that would

mean). So the user can do a GOTO to continue at some point, or he may

do an INIT, which has the effect of cancelling all execution and putting

the system back to its initial state.

For example, suppose we have the following highly error ridden

VERS routine:

ROUTINE R() ~
LINK A TO INTEGER
A+ TRUE
L: A + 3 OF 4
END

A typical session might be as follows:

+ R()

ERROR AT R+2
ATTEMPT TO STORE VALUE INTO LINK OF WRONG TYPE

+ P2{A)
UNO
+A+ 3

+ P2(A)
3

+ GOTO L
ERROR AT L

- 14h -

WRONG TYPE FOR SECOND PARAMETER OF
FOLLOW
+INIT

+
Here P2 is a library routine which prints out its argument
Notice that every immediate statement must be preceded by a blank,

and that every command (INIT, CONT, SET) must start in the first column.

During a break the user may also edit any part of his program by using

the co11111and EDIT. This calls the normal TSS editor to work on his source

program. (A knowledge of it is assumed here.) He may then continue exe

cution if he hasn't modified the line he was executing when the break

occurred or certain other lines which could have disastrous effects

{see II.J). VERS syntax checks every line entered by the editor in the

program and refuses the invalid ones.

Here is an example illustrating some of these points.

ROUTINE R(S TO STRING) _!i

TYPE THING IS
C TO BOOLEAN

THING A

L: SOFA+ TRUE
P2(S OF A)
END

+ R(IIDII)
ERROR AT L
ATTEMPT TO FOLLOW LINK WHICH DOESN'T EXIST

-------- --- ~~~ ~--"-------------------

+ P2(S)

D

+EDIT
:M3;E

D DO BOOLEAN
SYNTAX ERROR

D DO BOOLEAN
REFUSED
:E

D TO BOOLEAN
:F
+ GOTO L
TRUE
+

- l 4i -

- 15 -

PART II - VERS Reference Guide

The description of VERS consists of two parts. There is an abstract

VERS machine which consists of basic objects and primitive operations on them

and ways of combining these into programs. Second we can describe the

syntax of VERS and show how any VERS program corresponds to a program for

the VERS machine. This is also the way VERS is implemented; there is an

interpreter for the VERS machine and an incremental compiler to translate

programs for it. In the following description, we will intennix these two

parts, giving both the syntax and the primitive operations and objects and

the correspondence between the two for each different concept in the language.

A. Syntax Conventions

While running under the VERS system, the current text file must always

contain a legal VERS program, except when one is in 11 e.dit11 mode. In addition,

co11111ands may be typed in at the teletype in order to edit the program, to

execute statements immediately, and to perform.other functions. Thus we

pres_ent two gramnars: PROGRAM describes a legal VERS program, and COMMAND

describes the form of legal teletype lines.

Our variant of BNF does not use < > and replaces ::= with - In

addition the following abbreviations are used:

z ~ A{X I Y}B means Z - AXB I AYB and { } are used generally for grouping

x? means X may appear optionally

x* means X may appear 0 or more times

x+ means X may appear 1 or more times

X LIST means X{,X}*

X_SEQ means {X CRt

X IDENT means an identifier which is declared of type X.

r··-

- 16 -

CR is a terminal in the gramnar and stands for carriage return or end of

line. Identifiers (!DENT) are strings of letters, digits, and 11 • 11 beginning

with a letter. Integers (INT) are strings of digits. Strings (STRING) are

strings of characters enclosed in double quotes (11), where two quotes stand

for one, inside the string. All reserved words in the grammar are under

lined. This is for readability only, it is not necessary in actually

using VERS.

B. Comments and Continuation Lines

Comnents may be placed on any line after a 11 ! 11 ; everything on the

line after it is ignored. 11 ? 11 is used for two purposes: (l) When not in

column l it is a continuation character. This means that everything after

it on the line is ignored and the next line of text is to be considered as

an extension of the current. If more than one line in a row is continued,

they all are put together logically into one line. (2) All sub-lines of

a continued line (including the first) must also have a 11 ?11 in column l

(see section I). An immediate statement may not be continued. Also, a

token (reserved word, identifier, integer, or string constant) may not be

continued from one line to the next.

The following examples illustrate:

? ROUTINE P(A TO INTEGER, B TO STRING,?
? C TO BOOLEAN) IS! THIS IS A COr+1ENT
I THIS LINE IS IGNORED ENTIRELY

c. Naming Structure

PROGRAM ~ {DATA.BLOCK I ROUTINELSEQ
DATA.BLOCK~ DATA{.!Ji ROUTINE_IDENT_LIST}? CR

DECL_SEQ
END

_____ T ___ ----·--·- ------------------- - -- -- ---- -- --- -

- 16a -

ROUTINE~ ROUTINE.HEAD{IN ROUTINE !DENT LIST}? CR
DECL_SEQ? - - - -

STATEMENT_SEQ
END

AVERS program consists of routines and data blocks. VERS has a modified

----------------- -·-~~~~
I .

- 17 -

one-level block structure. Any declaration (DECL) which occurs within a

routine is local to that routine, and in fact the object will have new

incarnations if the routine is called recursively. Any declaration which

occurs in a data block is valid in all routines which appear in the

ROUTINE !DENT LIST associated with the data block. If that list is omitted,

then the declaration is global (valid in all routines). None of these data

block declarations are local, however, in the sense that they do not parti

cipate in recursion, and they are not initialized on routine entry. A data

block should appear in the program before any routines which are included

in its scope.

A routine name is valid within all routines which appear in the

ROUTINE !DENT LIST in the routine header and within itself. It is also

valid in any routines in which it has a forward declaration (see page 21).

If the list is omitted, then the routine name is global.

No name may have two declarations which make it valid in the same

routine, even if one declaration is global and the other local. This means

that one should be especially careful of names in global data blocks and

global routine names.

Example: DATA
LINK A

END

DATA IN R,S
LINK B

END

ROUTINE R() !!i SIS
A,B,R,T may be used
END

ROUTINES() INS IS
A,B,R,S,T may be used
END

ROUTINE T () IS
ROUTINE S
A,S,T may be used
END

- 17a -

D. Basic Objects and Declarations

Declarations in VERS describe static objects and, in some cases, give

them initial values. A static object is one which is named by an identifier

in the program and is created either at the beginning of program execution

(if it is global) or upon routine entry (if it is local). Dynamic objects

are created during execution by primitive routines.

The following are descriptions of each of the basic objects which can

exist during the execution of a VERS program and, where appropriate, the

syntax of their declarations. The full description must also include the

primitive routines which are applicable to each kind of Qbject. These are

in the next section.

(1) NODE. Nodes are the building blocks for VERS data structures.

They have no intrinsic meaning and are given meaning only by the way in

which they are linked to other nodes and atoms. Each node has a node type

defined by the progranmer (see 3.e.2). Static nodes are declared as follows:

DECL ~ NODE.TYPE_IDENT IDENT_LIST

(2) LINK. Links describe the access paths which exist in the data

structure. They go from nodes to other nodes, to atoms, and even to other

links. Each link has a link~ which specifies which types of objects

it may point to.

- 18 -

DECL ~ LINK{IDENT {TO TYPE.SET}1{+EXP}1}_LIST
TYPE.SET~ TYPE_IDENT{OR TYPE_IDENT}*

This declares a static link and defines what it can link to (its link type)

and its initial value. The expression is evaluated and stored in the link,

on routine entry if it is local or at the beginning of program execution if

it is global. If the link type is omitted it is taken to be ANY, and if

the expression is omitted it is taken to be UNO.

The use of a TYPE SET of more than one element implicitly defines

a compound type corresponding to the TYPE_SET, ·which is then used in its

place.

Examples: LINK A
LINK B TO STRING -- -
LINK E TO INTEGER + 0

LINK D TO STRING OR VAL
LINK F ,G,H
LINK I TO STRING, J TO VAL

(3) ATOM. Atoms are objects which have a meaning in themselves and

are indivisible with respect to the data structure operations. There are

special operations for some types of atoms, however.
? ?

DECL ~ TYPE_IDENT !DENT {!i{-·INTISTRING}}·

This is a general declaration for any static atom. If the atom is

defined elsewhere, such as with a routine or label, then it can not be

given a value here. In these cases, the declaration is necessary if the

object would otherwise be used before it was defined. Other than this, the

name must be given a value. Note that this is not just an initial value,

it is the object itself, and it cannot be stored into.

Examples: ROUTINE A
INTEGER S IS 3

- 18a -

There are seven atom types, which we now describe.

(a) INTEGER. Integers are in the range 215 - l to -215 + l

- 19 -

(b) BOOLEAN. TRUE and FALSE.

(c) STRING. A sequence of characters chosen from those normally

acceptable to TSS.

{d) LABEL. A reference to a statement to which control may be

{e) TYPE. A type may be a) a node type declared by the programmer,

b) one of the eight atom types, c) LINK, or d) a compound~-

{e.1) Compound Type

DECL ~ TYPE TYPE !DENT IS TYPE.SET

This declares the TYPE IDENT to stand for any of the types in the set.

These may also be compound types. A compound type may be used as an "allowed"

type {such as a link type), but it may not be the type of an object. That

is, a compound type can never be the result of a call TYPE.OF(A). In addi

tion, NODE, ATOM, and ANY are compound types with the obvious meanings.

Example: TYPE VAL IS INTEGER OR LISTEL
LINK A TO VAL -- -

Warning: Do not declare a compound type which refers to itself recursively,

such as

TYPE A IS BORA
or

TYPE A IS B OR C
TYPE C IS DOR A ORF

This kind of construction may cause an infinite recursive loop in VERS, which
will result in a STACK OVERFLOW message.

(e.2) Node Type

DECL ~ TYPE !DENT SEP? ~ CR
SEL.SPEC SEQ

- ? ?
SEL.SPEC ~ SEL.SET TO TYPE.SET{+EXP}'{PERMIIMPERM}'
SEL.SET ~ CONSTANT I [TYPE_IDENT] I {INTIINTEGER_IDENT}

THRU {INTIINTEGER_IDENT}
CONSTANT~ INT I !DENT I STRING

---------------~~-~------

- 20 -

Each node type has a "separate" flag (SEP) to be described later (see

EQ primitive) and a set of selector specifications. Each of these has a

selector set which is either a type or a constant. (These should all be dis

joint, but the compiler will not check for this. If they are not, then when

an ATTACH is done, it will use one of the correct ones depending on imple

mentation.) Associated with each selector set is (a) an allowed type

(TYPE.SET) which specifies what are the types which links named by these

selectors may point to, (b) an initial expression, which specifies what they

are to point to initially when they are created, and (c) a specification of

whether or not they are permanent. If a selector set is permanent, it must

be a constant (not a [TYPE_IDENT]); then each time a node of this type is

created a link is attached automatically for each permanent selector. If

the permanent specification is omitted, then the selector set is taken to be

permanent if it is a constant and impermanent if it is a [TYPE.SET]. If

the initial expression is omitted, it is taken to be UNO. If the selector

set is of the form "A THRU B TO C", where A and B are integers, A< B,

this is equivalent to

A TO C
A+l TO C

B-1 TO C
B TO C

If an identifier A appears as a selector set, then, if it has not been

declared as anything else, an implicit declaration is made as follows:

STRING A IS 11A11

- 21 -

Examples: TYPE VEClO IS
l THRU 10 TO INTEGER + 0 IMPERM

TYPE SETINT IS
[INTEGER] TO NULL

TYPE GLOB IS
A TO ANY
[INTEGER] TO GLOB

(f) NULL. NIL and LIND. LIND is of type NULL, but it is also

of every allowable type. This is so it may be used as the contents of an

undefined link of any type. NIL is a special constant which is the result

of a routine which does not have a result. In general it may be used any

where that a result needs to be returned indicating an error condition. It

will cause a type error, unless it is expected, since it is of type NULL.

(g) ROUTINE. i) Primitive routines are built into VERS. They

are the basic units of computation of the VERS machine. They are listed

in the next section. ii) Defined routines are specified in the program.

The execution of these routines and the evaluation of expressions are described

in section F.

A declaration must always occur before the use of the object in the

lexicographic order of the program except that a label may appear in the

context "GOTO L11 before it appears labelling a statement. Other uses of

a label must follow its declaration. There are certain cases (types, labels,

and routines) where the declaration cannot always precede the use. In

these cases the user must precede the use by a "forward declaration 11 such

as "ROUTINE R11 to let the compiler know the type of R. Then, of course,

later he must satisfy the forward declaration by putting in the real decla

ration. For labels and types, the forward declaration must be satisfied

within the same block (data block or routine) in which it appears. Forward

--- ------- --------·--- -- --

- 22 -

declarations of routines need not be satisfied to allow compilation of the

program; only a warning is given. An error will result if the program

tries to call such a routine, of course.

If an unsatisfied forward declaration of a type or label is detected,

an error message is printed followed by 11 FORGET? 11 • The user should respond

11 NO 11 if he intends to simply correct the error and compile his program,

and if he can do this by editing only the block in which the error occurred.

This will normally be the case. If he intends to do editing outside that

block, he should respond 11 YES 11 so that the compiler knows to forget what

it has done and recompile the block in question.

E. Primitive Routines

Each routine is described by a header which is in the normal VERS

syntax for declaring defined routines (see Defined Routines).

ROUTINE FOLLOW(A TO ANY, N TO NODE) TO LINK

This produces as a result the link from node N selected by A. It is

an error if the selector does not exist from N.

- 23 -

ROUTINE STORE (L TO LINK, A TO ANY) IQ ANY

This causes link L to point to A if the type of A belongs to the

allowable types for. L to point to. Otherwise it is an error. It's result

is A.

ROUTINE. CONT~NTS(L TO LINK) TO ANY

This produces as a result the object pointed to by L.

ROUTINE ATTACH(A TO ANY, N TO NODE) TO LINK

This creates a link L from N named A which is its result. It is an ,

error if the link already exists or if A is not of a legal selector set

for the node type of N. The link type of L is set to the allowed type

.of the selector set. The initial expression of the selector set is evaluated

to V and STORE(L,V) is executed.

ROUTINE DETACH(A TO ANY., N _TO NODE)

This deletes the link selected by A from node N if it exists. It is an

error if it doesn't.

ROUTINE TEST{A TO ANY, N TO NODE) TO BOOLEAN . -- -- ----
The result is TRUE if there is a link selected by A from node N and

FALSE otherwise.

ROUTINE CREATE (T TO TYPE) TO NODE
•·· i

If T is not a node type it is an error. A node N of type T is created

and returned as the result. For each permanent selector type S of T

execute ATf ACH (S, N).

ROUTINE SEL (N TO NOOE) TO SEQ

This produces a sequence (SEQ) of the currently existing selectors from node N.

--------------~~~

- 24 -

ROUTINE TYPE.OF(A TO ANY) TO TYPE

Returns the node type if A is a node, the atom type if it is an atom, and

LINK if it is a link.

ROUTINE KIND(A TO ANY) TO TYPE

Returns NODE, LINK, or ATOM depending on which of the three A is.

ROUTINE BELONGS(A TO ANY, T TO TYPE) TO BOOLEAN -- -- -
Returns TRUE if TYPE.OF(A) = T (if T is not compound) or if TYPE.OF(A) is

included in T (if T is compound)_.

The following routines perform ordinary integer arithmetic:
, ..

ROUTINE PLUS{I TO INTEGER, J TO JNTEGER) TO INTEGER - - -
ROUTINE MINUS(! TO INTEGER, J TO INTEGER) TO INTEGER

ROUTINE MULT{I TO INTEGER, J TO INTEGER) TO INTEGER - ---- ----
ROUTINE DIV{I TO INTEGER, J TO INTEGER} TO INTEGER - - -
ROUTINE MOD.(I TO INTEGER, J TO INTEGER) TO INTEGER

Returns the remainder upon integer division.

ROUTINE NEG(I TO INTEGER) TO INTEGER

Returns the negative of I.

ROUTINE GOTO.(L TO LABEL)

Transfers control to the statement referred to by L.

. ROIJTINE IFGO(B TO BOOLEAN, L TO LABEL)

Transfers control to the statement·labeled L if B is true, otherwise

does nothing ..

· ROUTINE NO.OP(·)

No operation.

The following routines perform respectively logical cc,njunction, disjunc

tion, negation, and arithmetic greater than and less than tests:.

- 25 -

ROUTINE CONJ(B TO BOOLEAN, C TO BOOLEAN) TO BOOLEAN

ROUTINE DISJ(B TO BOOLEAN, C TO BOOLEAN) TO BOOLEAN

ROUTINE LOG.NEG(B TO BOOLEAN) TO BOOLEAN

ROUTINE GT(I TO INTEGER, J TO INTEGER) TO BOOLEAN

ROUTINE LT (I TO INTEGER, J TO INTEGER) TO BOOLEAN

ROUTINE EQ(A TO ANY, B TO ANY) TO BOOLEAN

If A and B are links or atoms, an ordinary identity test is perfonned.

If they are nodes with the separate flag off, an ordinary identity test is

also done. If the separate flag is on, however, A and B are e ual if

they both have the same set of selectors and if the contents of corresponding

links are equal. Notice that if these contents are also "separate" nodes,

then the process is applied again.

Warning: Do not create a SEP node which links to itself, or links

to a chain of other SEP nodes in which there is eventually a link back

to itself. This may cause an infinite recursive loop in VERS, which will

result in a STACK OVERFLOW message.

ROUTINE IDENT(A TO ANY, B TO ANY) TO BOOLEAN

An ordinary identity test is perfonned, even if A and B are nodes with

the separate flag on.

ROUTINE UNPACK(S TO STRING) TO SEQ

This produces a sequence (SEQ) of strings which are the characters of S

in order.

--- --~--------~~~~~

- 26 -

ROUTINE READ() TO STRING

Reads the next line from the teletype up to but not including CR and returns

it as a value.

ROUTINE PRINT(S TO STRING)

Prints the string in S on the teletype.

ROUTINE NAME(A TO ANY) TO STRING

The result is a string which stands for A. It is not the name of the

variable containing A; it will only be a variable name if A is a static

link. The different types produce results as follows:

INTEGER -- a string of decimal digits

BOOLEAN -- 'TRUE' or 'FALSE'

STRING -- itself

LABEL -- the identifier which labels the statement

TYPE -- the identifier which stands for the type in a program

NULL -- 'NIL' or 'UNO'

ROUTINE -- the routine identifier

LINK -- the link name in the program if it is static and otherwise 'LINK'

NODE -- the node name in the program if it is static and otherwise 'NODE'

ROUTINE CONCAT(Sl TO STRING, S2 TO STRING) TO STRING

Forms the concatenation of the two strings.

F. Defined Routines
?

ROUTINE~ ROUTINE.HEAD{IN ROUTINE IDENT LIST}" CR
? - - - -

DECL_SEQ"
STATEMENT_SEQ

END I
ROUTINE. HEAD EXP

?
ROUTINE.HEAD~ ROUTINE IDENT(PAR LIST")

? -
{TO TYPE. SET}.
- ? ? ?

PAR~ !DENT {TO TYPE.SET}"{\EXP}" I @ IDENT{\EXP}"

- 27 -

A defined routine consists of the following:

(1) A sequence of fonnal parameters (PAR). Each of these is a link plus

a default expression. If 11 @11 is present, then the parameter is called

by reference (see below), otherwise it is called by value. The TYPE~SET

indicates the link type; it is taken as ANY if omitted. If the

parameter is called by reference, the link type should not be specified

because it will be that of the link which is passed. The default

expression is taken as UNO if omitted.

(2) A set of locals. These are all the links and nodes declared following

the routine header.

(3) A result link, which is included in the locals with an initial

expression of UNO (or NIL if TYPE.SET has been omitted) and a

link type of the TYPE.SET following the PAR LIST. This link may

be referred to as RESULT inside the routine.

(4) A sequence of expressions, called the code.

A defined routine is executed by making a new copy of it in which the

links which are parameters called by value and the local links and nodes

are replaced by new links or nodes of the same type; the corresponding

replacements for these objects are made in the code. Links for parameters

called by reference are replaced throughout the code by the actual parameter

which is

---~- -- --- ··---·------ - ----

- 28 -

being passed (which must be a link). Then for each parameter called by value

a STORE of the actual parameter into the formal parameter is executed. If

the actual parameter is UND then there is a STORE of the default expression

into the formal parameter. Then for each local link a store of the initial

expression into the link is executed. Each local node is initialized as if

a CREATE were done on its node type. Then the expressions are evaluated

in order except for changes in flow caused by GOTO., IFGO., or monitoring.

The execution ends when a GOTO.(RETURN.) or GOTO.(ERROR) is executed. The

value of the routine is the object pointed to by the result link at that time.

Intuitively, an expression is a constant or some nested calls on routines.

More precisely, it is either (1) an object or (2) a routine expression plus a

sequence of actual parameter expressions plus optionally an error label. The

value of an expression is either (1) the object itself or (2) it is obtained

by first evaluating the routine expression, then each of the actual parameter

expressions in turn. Then if it is a defined routine it is executed and if

it is a primitive routine, it performs the action which is specified under

primitive routines. If the primitive routine makes an error or if the defined

routine executes a GOTO.(ERROR) and the expression has an error label, then

control is transferred to that label when the error occurs. If either of

these happens and there is no error label~ an error message is printed and

GOTO.(BREAK) is executed. In addition, if the defined routine makes an

error other than GOTO.(ERROR), it will print an error message and

GOTO.(BREAK) even if it has an error label.

In addition, the expression has an 11 automatic contents 11 flag, which is

normally on. In this case, if the expression is a static link or a call on

FOLLOW or ATTACH, then the contents of the resulting link is automatically

taken except in the following cases:

(a)

{b)

(c)

- 29 -

The link is an actual parameter on a call to a routine which expects
this parameter by reference.
It is suppressed explicitly (@ in the syntax).

It is on the left side of an assignment.

Notice that any nodes or links which are created during the execution.

of a routine and are pointed to by global links, will remain in existence

after the routine is finished. This includes static nodes and links. If the

routine is then entered a second time new copies of local static nodes and

links are created, and the old ones (if they are globally referenced) will

still exist.

G. Statement and Expression Syntax

STATEMENT~ UNLAB.STATEMENT I !DENT UNLAB.STATEMENT
UNLAB.STATEMENT ~ STMT I

IF.CLAUSE CR
STATEMENT_SEQ
{ELSE CR
--- ?

STATEMENT_SEQ}.
ENDIF I
FOR.CLAUSE CR
STATEMENT.SEQ
ENDFOR

IF.CLAUSE~ IF EXP THEN
FOR.CLAUSE~ FOR EXP+ EXP, EXP WHILE EXP DO I

FOR EXP+ IN EXP DO - -
A label on a statement causes an implicit declaration of the identifier

as a static atom of type LABEL whose value is the labelled statement. IF

statements and FOR statements are defined by the following equivalences:

Statement

1f. A THEN
B

ENDIF

Code

IFGO • (NOT A , Ll)

B

Ll: NO.OP()

- 30 -

Statement Code

IF A THEN IFGO. (NOT A, Ll)
B B

ELSE GOTO l2
C Ll: C
ENDIF L2: NO.OP()

A+ B FOR A+ B, C WHILED DO
E LOOP: .!£. NOT D THEN GOTO OUT .
ENDFOR E

A+ C

GOTO LOOP
OUT: NO . OP ()

FOR A+ IN B DO
E

ENDFOR

LINK Tl, T2
Tl + FIRST OF B

T2 + LAST OF B
LOOP: IF Tl= UNO THEN GOTO OUT

A+ C OFT

E

1£ Tl # T2 THEN Tl + N OF Tl ; GOTO LOOP

OUT: NO. OP ()

STMT ~ STMT. l I
?

IF.CLAUSE STMT.l{ELSE STMT.l}" I
FOR.CLAUSE STMT.l

These IF and FOR statements mean the same as the previous ones.

The reasons for having two forms are for programmer convenience and ease

of incremental compilation. The other statements and expressions are defined

as follows:

STMT. l ~ STMT.2{;STMT.2}*
STMT.2 ~ ASSIG I GOTO EXP I RETURN{EXP}?
ASSIG ~ EXP I EXP+ ASSIG
EXP~ EXP. l I EXP. l REL.OP EXP. l I EXP\ LABEL !DENT

---------- --~~~

- 31 -

REL.OP~> I >= I < I <= I = I # I FROM I Ji
EXP.1 ~ EXP.2 I EXP.l OP.l EXP.2
OP.l ~ + I - I OR
EXP.2 ~ EXP.3 I EXP.2 OP.2 EXP.3
OP.2 ~ * I / I MOD I & I AND
EXP.3 ~ EXP.4 I EXP.4 OF EXP.3
EXP.4 ~ EXP.5 I EXP.4[ASSIG]
EXP.5 ~ UN.OP PRIM I PRIM
UN.OP~ NOT I $ I - I @

. ?
PRIM~ (ASSIG) I PRIM({EXP}"_LIST) I CONSTANT

Parameters which are omitted in a routine call are taken to be UNO. If no

parameter follows an omitted parameter in the call, then the corrma may be

omitted as well. The parentheses may never be omitted, even if the routine

has no parameters. Notice that omitting parameters may be used to cause

default parameter values to be passed {see section F).

Construct Code

GOTO A GOTO. (A)
RETURN GOTO.(RETURN.)
RETURN A RESULT+ A; GOTO.(RETURN.)

A+ B STORE(@A,B)
A\ B routine call A with B as error label
A> B GT(A,B)
A>= B LOG.NEG(LT(A,B))
A< B LT(A,B)
A<= B LOG.NEG(GT(A,B))
A = B EQ(A,B)
A # B LOG.NEG(EQ{A,B))
A FROM B TEST(A,B)
A IS B BELONGS{A,B)
A+ B PLUS(A,B)
A - B MINUS (A, B)
A ORB DISJ(A,B)

A * B MULT(A,B)
A/ B DIV(A,B)

- -- --~----------- -- - --------

Construct

A MOD B
A & B
A AND B
A OF B

A[B]
NOT A
$A

-A
@A
A(B1 , ... ,Bn)

In addition, if a label

equivalent to GOTO L.

H. Predeclared Objects

- 32 -

Code

MOD. (A,B)
CONCAT(A,B)
CONJ(A,B)
FOLLOW(A,B)
FOLLOW(B,A)
LOG.NEG(A)
CONTENTS(A)
NEG(A)
A with automatic contents flag suppressed
routine ca 11

L appears as an entire STMT.2, that is

All words underlined in the gralTlllar are reserved words or identifiers

and cannot be redeclared by the programmer. In addition there are a number

of other identifiers which are reserved by the system. These have a type

and a meaning as follows:

1) All the primitive routine names are of type ROUTINE with the

obvious meaning.

2) All the types mentioned in the basic objects section are of type

TYPE with the obvious meaning.

3) UNO and NIL are of type NULL.

4) TRUE and FALSE are of type BOOLEAN.

5) INF is of type integer. It stands for the largest integer in

VERS (215 - l).

6) The following identifiers are of type LABEL:

a) BREAK: transfer control to the teletype

b) RETURN.: return from the current routine

- 33 -

c) ERROR: return from the current routine by its error exit

(if it has one, otherwise it is an error, see section F).

7) LINK CUR.ROUT TO ROUTINE

This link contains the defined routine which is currently being executed,

or UND

8)

if there is none.

LINK RESULT TO result-type -- -
This link may be stored into by the code of a routine in order to indicate

what value it should return. The link type will be the type which the pro

grammer declares for the routine. It is of type NULL if there is no type

associated with the routine. There is a different RESULT link for each

routine and each is local to its routine.

9) In addition, sequences are a very important part of VERS, even

though they are not basic objects, so they involve several predeclared

identifiers of various types. A SEQ node has a FIRST and LAST link

which delimit the ends of a linked list of the elements of the sequence. A

null sequence has FIRST and LAST set to UND. The declarations are as

follows: TYPE SEQ ~

FIRST TO LI STEL
LAST TO LISTEL

TYPE LISTEL IS
C TO ANY ---
N TO LISTEL

Note that this also predeclares FIRST, LAST, C, and N as strings.

I. Commands and Monitoring

This section describes what may be typed from the teletype in VERS.

Whenever the VERS command processor is waiting for a response from the user,

it types out 11 +11 •

- 34 -

COMMAND~ STMT

This is an inmediate statement. It is compiled and executed as if it were

in the routine which was being executed when control was transferred to the

teletype. If there is no current routine, then an inmediate statement may

still be executed, but it may only reference things declared in a global

data block. After execution, the statement is removed and can never be

referred to again. All immediate statements must be preceded by at least

one blank when typed in at the teletype. All other commands, whose

descriptions follow, must begin in column one to distinguish them from

inmediate statements. Inmediate statements may not be continued.

COMMAND~ EDIT CR ---
The standard CAL TSS editor is called to edit the VERS source file.

Whenever an editing conmand implies adding a line to the file, a preliminary

syntax check is performed, and the line is not added if the check fails.

This check may be postponed by placing a ? in column l of the line. (This

is necessary for sub-lines of a continued line.) It will then take place

at the end of the editing session.

If the editor is in insert mode and the line is accepted by VERS, it

prints out a 11 • 11 to indicate this. If the line is not accepted, it prints

an error message and returns the user to insert mode. At the end of an

editing session VERS perfonns some more global errors checks on the program

as well as checking any postponed lines. If VERS discovers an error at this

point, it returns the user to the editor in order to correct the error.

The editor is exited in the normal way by F and returns to VERS.

The user may also type FIN, which exits from both the editor and VERS.

Warning: Do not exit from this kind of editor call using Q or F,FNAME.

This may cause trouble. However, one may exit from EDIT FNAf'IE in any of

-- r------------------ - --

- 35 -

the nonnal ways. When the editor is called using EDIT, it creates a

temporary file XVINP, . which contains the VERS program.

COMMAND~ EDIT FNAME CR

The FNAME (file name) is as defined in the nonnal TSS commands. This

calls the standard CAL TSS editor on the specified file as if it were called

in the ordinary way from the TSS co11111and processor. No syntax checking is

done on lines entered.

COMMAND~ {IN ROUTINE.IDENT}?{SET I UNSET} TRAP.LIST CR

TRAP~ LINK.IDENT I LINE.DESIGNATOR I
LINE.DESIGNATOR THRU LINE.DESIGNATOR

LINE.DESIGNATOR~ LABEL.IDENT{{+l-}INT}? I INT I - INT

This command provides the facility to SET and UNSET trap flags on

LINK's and lines of code. Flags are nonnally UNSET. If a flag is set on

a line, control will be given to the user before the line is executed. If

a flag is set on a link, control will be given to the user whenever a STORE

is attempted on the link, before the STORE takes place. After a trap occurs

the user may continue execution by typing CONT.

If no routine is specified, the link or line to be trapped on is taken

relative to the current routine. An integer LINE.DESIGNATOR i refers to

the ; th line of the specified routine or the current routine (The routine

header is line 0.). If there is no current routine, it is taken to be the

; th line of the program {again starting at 0). A negative line designator

(-i) means to put the trap on the ; th line before the specified (or current)

routine. Links and labels may not be specified unless the routine is given

explicitly or there is a current routine.

Examples: IN R SET L+3 THRU L+6
SET L-2 (must be a current routine)
IN R SET X

UNSET 12

- 36 -

COMMAND ~ INIT CR

This instructs the system to forget the current state of the execution

of the program, and to return to inactive state (see section J). It does

not change the state of any traps which may be set.

COMMAND~ RECOMP

This recompiles the entire program. This has the effect of an INIT

plus unsetting all traps. In addition it allows the compiler to reclaim

some space which has been lost.

COMMAND~ CONT CR

Continues execution at the est point where it was interrupted by a

trap or a break.

COt,t,1AND ~ WHO I FIN

As in all TSS subsystems.

J. Execution Control

Initialization of global data is controlled as follows: The program

is in inactive state when the user first enters VERS and just after an

INIT or RECOMP. It remains in this state until the user first attempts

to execute something. At this point it enters active state, initializes

the global data structures, prints out 11 INITIALIZED 11 , and executes the

user's code, in that order. Notice that the INIT or RECOMP may be

initiated by the VERS system because of certain editing which has been done

(see below).

If a declaration is added to a routine which is currently being executed,

then it will not be initialized (if it contains initialization) at that time.·

Of course if the routine is then called in the ordinary way, the locals for

that call will be initialized. If a global declaration is added to a data

block during execution, it will not automatically be initialized. The

- 37 -

prog~anmer must do an INIT to get this effect.

Similarly, whenever the compiler is forced to recompile a data block

because of editing which has been done, its static links and nodes will then

be uninitialized. The compiler types out "SCOPE INVALIDATED" to indicate

this.

Definitions: (l} An active routine is one which is currently executing or

one which has executed ·a ca 11 on an active routine.

(2) An active statement is one which is currently being executed or

one which has executed a call on an active routine.

If the program has returned control to the teletype during execution,

and the user has then edited his source file, he may continue execution

of this program unless one of the following things happen:

(1) He edits a line, containing a routine header, data block header,

or END.

(2) He causes the scope of a line (the data block or routine in which

the line resides) to be changed.

If either of these happens, the system prints "TOTAL RECOMPILATION NECESSARY"

and does a RECOMP.

(3) He edits or deletes a declaration in an active routine.

(4) He edits or deletes a line containing an active statement.

If either of these happens, the system will print an appropriate message

and do an INIT.

If a label is stored in a data structure, and then moved by editing

the source, the stored label will refer to the new statement which is labeled.

If the meaning of a node type is changed by editing, all future operations

on a node of that type will be governed by the change, even if the node was

- 38 -

created before the change. Static nodes and links remain in existence as

long as they are referenced, even if their declaration is deleted or changed.

K. Library Routines

Each of these routines resides on a file whose name is the first seven

characters of the routine name. There is no special provision for library

routines in the VERS processor. You just read them into VERS in edit mode.

Some routines in the library use others in the library. In this case you

must be sure to read in the routine which is used first.

ROUTINE CLEARNODE(ND TO NODE)

Detaches all links from ND.

ROUTINE Pl(A TO ANY)

Prints A in the following format:

USES CLEARNODE

If A is an ATOM, it calls PRINT(NAME(A)).

If A is a LINK, it prints 11 -+-11 followed by the contents of A

in Pl format.

If A is a SEQ it prints [B1, ..• ,Bn] where the Bi are the

elements of the SEQ.

If A is a NODE, it prints (B1, .•• ,Bn) where the Bi are the

objects pointed to by the selectors of A. It will not go into a loop

even if the V-graph has a loop in it. If it reaches a node which printed

before, it prints out the name of the node if it is static and "NODE;" if

it is dynamic, where i indicates that it was the ; th node printed out

in this call on Pl.

ROUTINE P2(A TO ANY) USES CLEARNODE

Prints A in a format which is the same as P2 except that for a NODE A,

it prints out (B1 TO c1, •.. ,Bn TO Cn) where the Bi are the selectors

- 39 -

of A and the Ci are their contents. In addition, if Ci is UND,

it omits the 11 TO C. 11 •
l

ROUTINE PACK(S TO SEQ) TO STRING

This is the inverse of UNPACK. It converts a sequence of STRING's into

one large STRING. It returns an error if any of element of S is not

a STRING.

ROUTINE SCAN() TO SEQ USES ADDL

This reads a STRING S from the teletype, and returns a sequence of

STRING's which are the tokens in S, where a token is defined as a

sequence of characters separated by blanks.

ROUTINE ADDF(A,S TO SEQ)

Adds A as the first element of S.

ROUTINE DELF(S TO SEQ) TO ANY

Deletes the first element of S and returns it as a value. Returns an

error if S is empty. Notice that ADDF and DELF can be used as

push and pop on a stack S.

ROUTINE ADDL(A,S TO SEQ)

Adds A as the last element of S.

ROUTINE DELL(S TO SEQ) TO ANY

Deletes the last element of S and returns it as a value. Returns an

error if S is empty. This routine has to search through the sequence S.

This is only an initial set of library routines. More will be added

as time goes on.

-------- --- --- ------ -- ----- --

- 39a -

APPENDIX A - Hints and Warnings

Hint: The message 11 SYNTAX ERROR 11 may be given because of a misdeclared

identifier. Be especially careful of reserved and predeclared identifiers

such as 11 N11 , 11 C", and 11 TEST 11 •

- 40 -

Hint: If anything wierd happens, try a RECOMP. It might go away.

Warning: If you get an error message followed by a 11%11 prompt

character or the bead ghost, it is either a system error or you have run

out of some kind of space. See Jay Earley.

Hint: Don't try to run without at least Pl or P2 from the library.

VERS was not intended to be used without some sort of print routine.

Known Bug: In the message given for a break or an error, the line will

sometimes be wrong: If the error occurs in the header of a FOR statement,

the line printed may be the endfor.

Hint: If you get an error during a routine call or during the initiali

zation of its locals, the line indicated in the error message will be the

line containing the call, not the routine header.

APPENDIX B - VERS Syntax

This is simply a collection of all the BNF in Part II of the manual.

See II.A for the metalanguage conventions used.

PROGRAM~ {DATA.BLOCK I ROUTINE} SEQ
?

DATA.BLOCK ~ DATA{]!! ROUTINE_IDENT_LIST}" CR
DECL_SEQ
END

DECL ~ NOTE.TYPE !DENT !DENT LIST
? ?

DECL ~ LINK{IDENT {TO TYPE.SET}"{+EXP}"}_LIST

TYPE.SET~ TYPE_IDENT{OR TYPE_IDENT}*
? ?

DECL ~ TYPE_IDENT !DENT {]i{-"INTISTRING}}"

DECL ~ TYPE TYPE_IDENT _!i TYPE.SET
?

DECL ~ TYPE !DENT SEP" IS CR ---
SEL.SPEC_SEQ

--------- ----~--- --- ----- ------------------

- 41 -

$EL.SPEC~ $EL.SET TO TYPE.SET{+EXP}1{PERMIIMPERM}?

$EL.SET~ CONSTANT I [TYPE_IDENT] I {INTIINTEGER_IDENT}
THRU {INT I INTEGER_IDENT}

CONSTANT~ INT I IDENT I STRING

ROUTINE~ ROUTINE.HEAD{IN ROUTINE IDENT LIST}? CR
DECL_SEQ? - - - -

STATEMENT_SEQ
END I
ROUTINE. HEAD EXP

ROUTINE.HEAD~ ROUTINE IDENT(PAR LIST1)
{TO TYPE.SET}? -

PAR~ IDENT {TO TYPE.SET}1{\EXP}? I@ IDENT{\EXP}?

STATEMENT~ UNLAB.STATEMENT I IDENT: UNLAB.STATEMENT

UNLAB.STATEMENT ~ STMT I
IF.CLAUSE CR
STATEMENT_SEQ
{ELSE CR
STATEMENT_SEQ}?
ENDIF I
FOR.CLAUSE CR
STATEMENT.SEQ
ENDFOR

IF.CLAUSE~ IF EXP THEN

FOR.CLAUSE~ FOR EXP+ EXP, EXP WHILE EXP DO I
FOR EXP+ IN EXP DO

STMT ~ STMT • 1 I
?

IF.CLAUSE STMT.l{ELSE STMT.1} 0

FOR.CLAUSE STMT.1

STMT.1 ~ STMJ.2{;STMT.2}*

STMT.2 ~ ASSIG I GOTO EXP I RETURN{EXP}?

ASSIG ~ EXP I EXP+ ASSIG

- 42 -

EXP ~ EXP. l I EXP. l REL.OP EXP. l I EXP \ LABEL_IDENT

REL. OP ~ > I >= I < I <= I = I # I FROM I .!i
EXP.l ~ EXP.2 I EXP.l OP.l EXP.2

OP.l ~ + I - I OR

EXP.2 ~ EXP.3 I EXP.2 OP.2 EXP.3

OP.2 ~ * I/ I MOD I & I AND

EXP.3 ~ EXP.4 I EXP.4 OF EXP.3

EXP.4 ~ EXP.5 I EXP.4[ASSIG]

EXP.5 ~ UN.OP PRIM I PRIM

UN.OP~ NOT I $ I - I @

PRIM~ (ASSIG) I PRIM({EXP}1_LIST) I CONSTANT

COMMAND~ STMT

COMMAND~ EDIT CR

COMMAND~ EDIT FNAME CR - -
COMMAND~ {IN ROUTINE.IDENT}1{SET I UNSET} TRAP.LIST CR

TRAP~ LINK.IDENT I LINE.DESIGNATOR I
LINE.DESIGNATOR THRU LINE.DESIGNATOR

LINE.DESIGNATOR ~ LABEL. IDENT{{ + !-}INT/ I INT I - INT

COMMAND~ INIT CR --
COMMAND~ RECOMP

COMMAND~ CONT CR --
COMMAND~ WHO I FIN

	Table of Contents
	Introduction
	Part I
	Introduction to V-graphs
	Introduction to VERS

	Part II - VERS Reference Guide
	A. Syntax Conventions
	B. Comments and Continuation Lines
	C. Naming Structure
	D. Basic Objects and Declarations
	E. Primitive Routines
	F. Defined Routines
	G. Statement and Expression Syntax
	H. Predeclared Objects
	I. Commands and Monitoring
	J. Execution Control
	K. Library Routines
	Appendix A - Hints and Warnings
	Appendix B - VERS Syntax

