iy oS TN T

THE USES GF A MICROPROCESSOR IN AR
INTEPACTIVE (o

i

The intent of this paeper is io meke the
reached the periormence level e it
to perform wmany functions in en interac

allow it to perform many logically dist

will be given of 8 iim? C)it]n' s) tau vif

primary memory, a

mible processors are well suited to a
number of tasks rclevent 1o the operation of an
intersctive computing system i
processor was included in a conpw'1ﬁﬁ systein {0
perforin a single dedicated function. . The reason
for using microprocessors is te replace comple
specially desicned hardeare with simple and flexi-
ble firmware. Some of the tasks for which it is
rcasonable to utilize microprocessors are terminal
input-output m“]'1p]°>1nd, 1nLut ou twut device con-
trolling, data trensfer, comnunications, real-time
data gathoring, scheduling of proce\ses and central
processing unit instructicn emu lation.

Micreoprocessers currently available on the market
have improved in speed, size end interfacing
flexibility to the point wihere it is feasible to
consclidate many microprocessor functions into a
single microprocessor, thereby sicnificantly re-
ducing the total hardware necessary for a complete
computing svstem., We proceed 1o discuss a micre-
processor prograim orgsnization to eccomplish this.
The final section will give en example ruich
applies the technique to & specific problen.

2. MICROPROCESSOR LOGICAL

The microcode of a microprocesser can be divided
inte Yogicoliy distinct functionzl units., Each
functicnal unit performs a different task asyn-
chrono tc 211 the other f

uni 1ite share the mi
processor & time. 7h exisis a ss;grabv
body of microcode celled the Ter which is

SPUTIRG SYSTEM

stract

observation tnat microprocessors have

is reesonable to use one microprocessor
tive cor
discuss the technioues for "multi-microprogreos
inct, simultancous functions,

Our work will

aputing systan.
ing" a single microprocessor to

L An example
so hardware comnorents are mogems,
singie microprocessor. .

control among

t ictional unit
once,.nter:d, runs to completicn and then
passes control back to the schceduler. As-

I the past, @ .icro- sociated with cach {functicnal unit is an

atiention flag The scheduler transfers
control to a functional unit only 1if its
attention flag is set. “hen the functional
unit is entered, the attention {lag is clear-
ed. An attenticn flag may be set b) the
action of any functicnal unit or by the oc-
curance of some event external to the micro-
processor.

3. SCHEDULER

It is the job of the scheduler to select the
ext fuactional unit to run. If more than
one attention flag is set then the scheduler

nust use some algorithm to determine which

functional unit to run {irst. This algori-
thm nmust be simple since the qchodulcr is
cailed often and its overhe nust be small.

A fixed priority alborltnn is both simpl

and quite powerful. Each functienduunit is
assigned a fixed priority. Of the functional
units with attention flags set, the scheuuler
selects the functional unit of highest pri-
ority.

A fixed priority scheduler can be implement-
ed by scenning the attention flags in fixcd
rder until oie is nd which is set. In

!
me microvrocessors such a scheme can be
pl(tgnLgu with one micre-instruction per
1

attention flag. Since high priovity func-

/ °
tional units will in general be called more often
than low priority functional units, the average
scan time will be less than half the maximum, I7
the number of functional units is too large, then
scanning will take too long and it might be de-
sirable to have a piece of herdware to determine
the next funetional unit to run. A microproces-
sor instruction which locates the leading one bit
in @ register would make this scheduler a two in-
s{ruction routine.

al unit.

4, FUNCTIONAL UNIT RESQURCE REQUIREMENTS

A register may be used by a functioneal
of four ways:

Each functional unit requires microprocessey re-
sources of two types a) time on the micreproces-
sor b)) microprocessor working steveace, e.q.,
speed registers, We will develop crwtrria for
satisfying these resourte requirements.

Time. The timing environment of the functicnel
vniit with priority i can be characterizced by three
values:

(1) Te(i) - the maximum time functional unit
i executes. This includes scheduling (3)
time., Thus Te(i) is the worst case time
between entrys to scheduler for function-
al unit i. (34,

(2) Ta(i) - maximumatime between raising of

the attention flag and entry to the

functional unit. (4)
ful{i) - minimun time belween at

f]ag setiirigs for the funclional unit.

renticen

(3)

of the various functional units must
such @ way that under worst coni-
tions every functional unit 1 will be called within
time Te(i) after setting its attention flag.

The prwor1t1eg

by ony
use of the

Pich (1)

To avoid conflicting use of
ing criterion must be sati

Criterion 3:

A1Y words (registers) with identical performance
characteristics are said to Leiong
Thus, 811 high SpeCu rcq13L~*s n]ont b@ 2 class. If
the sum of the
by all functional units exceeds thic
ber of regust@*c,
cale registers to move than one
In this case it must be insured
register
with the

to the same class.
registers given class reguired
available nuni-
necessary to allo-
functionel unit.
that the use of a
unit does not conflict
ter Ly scme cther function-

HI o

then it becones

functional
reg:

unit in one

.

single fumct1cna. unit.
- Used to hold values

D>o1CPfe4 \ev'

yecution of the same fgnc-
tional hnlt. If a register is used as 2
dedicated register then the regtster riay
not be used as any otiher type of register.

Pessing Pegisier - Used to pa
from the current functionzl un
functional unit. Vh I

passed to anot!

ss values

it to another
ue is to ve
unit(s) then

I3

a va

Tunctiona

al
3
that fun
£
i

the attention 23 oF unctional unit
must be set by the curr unctional vnit.

Receiving
h\/ 1 he

b
a Va:ud

~)
5
m
oy
N
w
ot
m
it
<
o
-
(o]
—
—
O
T

For every register x, @ functional
unit using x &s a receiving register

Formally stated:) must have hiﬂr er priority then any
) l_ o other functicnzi unit using x as a
Criterion 1: For every i: Ta(i+1)>22Te(3)* Ta(i+l) temporary or pass1nj register.
i=1 Tw(i]

This critericen insures thet when 2 valus is being
Furtherirore we rust insure that no attention flag passed in a register, no fuqcticﬁa} urit will use
is set which was not previously reset. This is the register until the vailuz hes been received.
satisfied if:

A microprocessor program organ vizaticon with inter-
Criterion 2: For every i: Tu(i)=Ta(i)+Te(i) ruptable functional units was rejected because:

I{ may be true that for a yiven set of functicnal (1)

units there exists no assignment of prioritics

which satisfy the two criteria. It may be possi-

ble to meet the criteria by dividing a functional (2)

unit into two or mere functional units. Tne first

sub-unit would set the attenticn flag for the (3)

second before it returns contrel to the scheduler.

An exampie of thic will be given later.
Microprocesser working storage is ge

2llocated in fixed size units called words.

of storage may be implemented in one of severzi

kinds of hardwars, For example, & word may b“ 2

high speed registier, a medium <p§eH scratch-pac

register or @ vord of core memcry. Working s

in microprocessor systems, particularly high

esisters, is limited, ThuJ it is desirable
optvmxz; its use.

Space. ra}]y

3 The following topics are
Words due te lack of

~terfacing regis

Tinks to inter-
are expensive.

Registers to hoic
tupted

In general more working storege would be
required.

return
£ Watars s o
functicenal units

The nature of the functions under consi-
deration does not reguire immediate re-
sponse even for high priority functions.

not discussed in this paper
space.

¥hat can be done about the heavy 1/0 in-
ster requirements of a

microprocessor.
Vhat 3re iwportant
proce sty

Details of microprogremming techniques
to implement specific types of function-
al units. :

(3)

5. EXARMPLE

nle of the applications of a
multi-microprogramned microprocessor will now be
given. A1l the nunbers in this section are con-
trived for the purposes of the example. The
microprocessor is assuned to have characteri
approximating:

£ osimplified exem

siics

150 ns instr

truction cvole time
2K microcode memiory viords

24 high-speed registers

o 0 Too
Mo N et

\ reasonable micro-instruction set

This microprocessor plus the foltowing listed
items will be the only her required by a
hypothetical €4-user dedicated time-sharing sys-
tem giving 2 second response to trivial requests:

rdave

a) 32 K words of 1 sec¢ primary mewory inter-
faced directly to microprocessor 1/0
registers.

b) 64 terminals each of whose serial data
lTines are latched to a single hit within
micronvoczssor I1/0 registers,

c) Secondary storage dovice (disk or drus)
with & transfer rate of 1 word every 12
sec. Control lines from the device are
Hatcheu directly tce a microprocessor I/0
register. Data lines are rouied thrcugh
a serial-parallel/paraliel-serial con-
verter to an 1/0 register.

The microcode is initially partitioned into four
functional units:

(1) CcPU. This functional unit emulates the
order codes and addressing structure of
the machine presented io the user. This
functional unit can always run since
there are always instructions to execute.
Its function is to execute the instruc-
tion in memory designated by the p-counter
and then return Lo the scheduler. The
CPU is the functional unit with lowest
pricority. The quantities Ta and Tw do
not apply to the CPU.

(2) Disk Transfer Unit. This unit is re-
sponsible for transfering words of data
between the disk end primary memory. The
disk hardware must raise the attention
flag for this functignal unit when it

has another word read from the disk or is
ready for another word to write on the
disk. The unil will count the number of
vords transferrcd and then notify the
disk control functional unit when the
transfer is complete by raising its
attention flag.

(3) Disk Control Unit. This functional unit
is responsible for starting a date trans-
fer and handling disk error conditiaons.
Its attention flag is set by the disk
transfer unit vhen a transfer is complet-
ed and by the hardware when a disk arim
move is completed or when a sector gap

is reached. The unit.issues commnands to
the hardware {0 start ari movenents and

date transiers. It also senses the stste
of the disk end indicates error condxtlons
to the CPU.

Terminel Multiplexor. This unit is re-
snoncible for sending end receiving bits
of information from the termingls con-
nected to the systewm. The unit performs
bit serial to perallel conversien and
maneges a character buffer for each temi-
nal. The attention flag is set by an
external cliock often enough to properiy
sample the input lines.

(4)

Table 1 shows the tiwing and high speed register
requirvenents of cach functional uvnit. The units
of time are microseconds

It is clear that this organizetion violates the pra-
viously given timing criteria. Te(CPU) is 20rsec.
hecause there are sc nsiruc11onk (e.g 9. wu]l‘r“
and dividz) uhich n:y tak‘ hat long.
solved by creati
instruct1gr thet \111 tr:o W“re than, say
Then whenever a long instruction is doceded by
CPU functional unit, the sttention f
propriate new functional wni* wiil b
control will be transferred {o the s
Each of these new functional units w'
subdivided so that they vi]l neer
without returning control
multiplexcr may ulso be wo4ularlz°d in a \cry
ratural way (scanning only a subset of the lines in
each sub functional unit.)

A
5 sec

Tne

The above wodifications have solved the timing pro-
blems. To allocate registers properly, ve must
share the tempcorary registers used by the CPU and
multiplexor. This caen be done by guaranteeing that
the CPU end multiplexor (and their functional units)
never intersperse execution. The modified organi-
zation is shown in Table 2. A priority ordering
which satisfies the three criterie is transfer unit,
control unit, multiplexor 2, multiplexor 3, nuiti-
plexor 4, multipiy 1, multiply 2, multiplexcr 1,
cPy. S

OHCLUSTON

This short paper has demonstrated the feasibility
of using a single microprocessor to perform severel
sophisticated tasks. The cuthors would be pieased
to censult on the subject in more detail with thos
interested in epplying those techniques

457

cpu

Multiplexor

Transfer
Unit

Control
Unit

CPU

Multiply 1
Multiply ?
Multiplexor 1
ultiplexcr 2
Muitiplexor 3
Multipiexor 4

Transfer
Unit

Control
Unit

[oo BN ¢]

Ta

250

10

w
(@)

Ta

10

30

Tw

1000

12

12000

Tw

1000
1000
1000

1000

12

12060

TACLE 1

Cedicated
Registers

TABLE 2

Dedicated.
Regisicrs

15

~

0

458 .

- Peceiving

