
\
\

THE USES OF A MICROPROCESSOR JN AN
INn:PJiCTl V[co;,;punriG s YSTEM

Charles A. Grant
Mark L. Gr2enGerg

D2partm 0 n~ of Elcctric~l r~~~r~ering
C.'.fld (c,.~r\J:,.i"Lti~ Science

University of CalHornia, r:erkeley

Abstract

The intent of this µaper is to r,ake the observatfon that microprocessors have
reached tile perfor·mance level 1·:hcre it is rec,sonable to L;se one mi croproces~;or
to pcrfOi-m many functions in ctn interactive c::i:nputing system. Our 1·:crk \·1ill
discuss the techn-i<.iucs for "1;,u1ti--;·:1icrc,p,-0Jr~•·,:-;iing 11 a sinJlc micro;iro,;:essor to
al101-1 it to perform many log·ically distinct, simultaneous functions. An example
vii 11 bf! given or a ti 1;;2-sli,u-i :19 system 1·1hose h;;. rd,·1an~ coill:Jo:·:en ts a re modems,
Frimary mer.10ry, auxiliary storogc and a si11~Jle microprocessor.

1. JfffRODUC:TlCi·~

Mi croprngra,mnb 1c processors « re 1·12 ll suited to a
number of tas!:s relevant to the• operation of an
interi!ctive computing system. In the.past, a .. icro­
processor v:as included in a ccn'pu1;i ng sys teli1 to
perform a sing ·1 e dedicated fwict ion. • The reason
for using microprocessors is to replace complex
specially de~igned hard~are with simple and flexi­
ble firr.Mare. Some of the t~sks for 1,hich it is
reasonable t0 utilize riicroprocessors are ternlinal
fnput-output multiplexing, input-output device con­
trollinq. datil transfer, co:T?:nunications, real-time
data gai~ering, scheduling of processes and central
processing unit ~nstruction emulation.

Microprocrssors currently available on the market
have ir,;proved in speed, size arcd interfacin9
flexibility to the point 1;1iiere it is feasible to
consolidate many microprocessor functions into a
single microprocessor, thereby significantly re­
ducing the totcil bardv13re necessary for a comr,let<:
computing system. We procccC: to discuss a micro­
processor program organizatio•1 to acc011plish this.
The final section will give an example which
ap,i1ies the technique to a ,,;:,ccific problun.

2. MICP.OPROCESSOf'. L00ICf\L OR.G1\1{1Zfi.TIC:i

The microcode of a mi crcp,ocesscr can be di vi (\:Cd
into 1ogico.lly distinct fu;;ction3l units, Ecch
functicna1 J:iit perf,m:::; a diffen:nt tasf: as,n-
chrono:.1sly \.1 ~th resp:.:ct to z:11 the other futiCi..ionai
units. Th~ fur1ctio:1Jl unit~ st1a»·2 the micrn­
pr0ces~or OGe ~ta time. Thcr~ exists a se~ar2Lc
body of n:icroco,k~ cal 1ed the schcduh,r ~::11ch is

Tcspo;1~:il. 1 Jc :fc,~. tr~~nsf.crrir;g cant1·cl am0n&
the funcUona] units. A funcUonal unit
once ,entered, runs to completicn and thC'n
passes control back to the schcJulcr. As­
sociated Eith each fu11ctionaj vnit is an
attention flag. The schedulf'r transfers
control to a functional unit o~ly if its
a t t c n t i on f l a g i s s e t . Wh c n the fun c t i on a 1
unit is entered, the &ttcntion flag is clear-
ed. An attention flag may be set by the
action of any functional unit or by the oc­
curance of some event external to the micro­
processor.

3. SCHEDULER

It is the job of the scheduler to select the
next functional unit to run. If more than
one attention flag is set then the scheJulcr
must use some algorithm to de terminc 1:h ich
functional unit to run first. This algori-
th:n rnust be sin1plc since the scheduler ls
cciJled often and its overhead must be s1:1:.1ll.
A fixed pTiority algorithm is ~oth siraple
and qui tc powerful. Each func t io::rJun i. t is
assii;ncd a fixc>d priority. Of the functi:.,nal
u1:it.s ¼'.i.th at.tcntio;1 flags set, the sd1cuuler
selects the functional unit of highest rri­
ority.

A fixed priori t? schcclu]er can be imple1:1cnt­
cd by scan;.i.ng the attention flags in fixed
o nk r u n t i 1 on L' i s f o un J w h .i ch i s ~ c t . I n
some Ii!icr0J>r~ 1 :.:c~;sors such a schcnie can tc
i1,tplc1:1cntc:d Ki-th one micro-insi.ruction per
a t tc· H t i on f Lg . S inc c h i g h I? r i o l' i t y f u ; , c -

455

((
/.

tional units will in general be called more often
than lm-1 priority functional un"its, the average
scan time will ue less than hc11f the maximuw. If
the numb,•r of functional units is loo large, then
scanning will take too long and it might be de­
sirable to have a piece of hard,·1are to determine
the ncx t fur:rti ona 1 unit to run. A mi croproces-
s or instrnction l"lhich locates tlie leading one bit
in ,1 register 1-wuld make this scheduler a two in­
struction routine.

4. FUNCTIOi!At. UNIT RESOUf:C[REQUIRErmns

Each runctional unit requires microprocessor re­
sources of two types a) time on the micrcproces­
sor b) r:1icroprocessor 1101'ki11~J storaQc, e.g., h:,h
speed registers. ~e wil~ develop criteria for
satisfying these rc~ourte requirements.

Time. The timing environment of the functional
unTf 1·:ith priority i can be characterized by thn,e
values:

(l)

(2)

(3)

Te(i) - the maximum time functional unit
i executes. This includes scheduling
time. lhus Tc(i) io. the 1·1orst case time
betv1e.:,n entrys to scheduler for function-
al unit i. n1.,..rn

oo:Qv.,,,,.,._
Ta (i) - rna xi nn.:m" ti me bet\ieen raising of
the attention flag and entry to the
functional unit.

·1v:(ij - r:dnimurn i.ih:i:~ bet\•!et~n atte11tic:1
flag settirigs for the functional unit.

The priori ties of ti:e various functioni"l units must
be assi~:ned in such a 1-:ay that under ~1orst conr'.i­
tions every functional unit i will be called within
time Ta(i) after setting its attention flag.
Formally stated:

i
Cl'iterion 1: For evei-y i: Ti'(i+l)>~Te(j)-1' Ta(i+l)

j= l T~:(~il---

FurthenPore W' r'ust insure t 11at no ajtentir.n fJiHl
is set which was not previously reset._ This is
satisfied if:

Criterion 2: For every i: T11(i)>Ta(i)+Te(i)

It may be true that for a yiven set of functional
units there exists no assignr11ent of priorities
which satisfy the two crit~ria. It may be possi­
ble to meet the criteria by dividing a functional
unit into two or rr.cr·e functional t,nits. The first
sub-unit would set the attentio~ flag for the
second before it returns control to the scheduler.
f,n ex-:iqile of this 1,1i 11 be given later.

Space. Microprocessor working storage is generally
aTroca ted in fi XCC' size uni ts ca 11ed hC•rds. ~:::ird5
of storage mav be imulemcnled in one of several
kinds of hard;are. ~or example, a word nay be a
high speed registc,r, a n;edium sp2cd scratch-pad
reoister or a 1·:orc of core mercory. • }forking storr:ge
in~micror,-ocessor systci11s, particularly high s;;ee:d
resistrrs; is 1initcd. Thus it is desir.:it.>le to
optir.dze its use.

All words (registers) 1•;ith icentica1 performance
characteristics are said to Lelo~y to the same class.
Thus, al1 hi~:h speed registers 1,,ight be a class. If
tbe su;,i of· the registers in a given class required
by all functional units exccccls the available nu~~
ber of registers, then it beco,,:es necessary to allo­
cate registers to more thc1n on2 functional unit.
In this case it must be instn-ed that U:e use of a
register by or,e functional w~it does not conflict
with the use of the register Ly son.e other function­
al unit.

A register may be used by a functt ona l unit in one
of four 1·1a_ys:

(1)° Ternr,orarr_P.eC!istc-r - Used tJ hold tec:­
porary results c.;ring the execution of a
single functional unit.

(2) Dedicated Register - Used to hold values
for a future execution of the same f0nc­
tiona1 unit. Jf a reciste•- is used a:, a
dedicated register th~n the rcg·lster r,,ay
not be used as any other type of register.

(3) Pdssing registrr - Used to pass values
from the currenf functional unit to i'nother
functional unit. ~hen a value is to be
passed to ar.other Tune ti 002. l ur:i t(s) then
the attention flag of that functional unit
must be set by t.he_curre1;t functional pnit.

(4) Receiving REgister - The register is used
hy th~ c0rrert f~i~ctic~~1 ~=~i! tc rcc0~~-2
a valu2 fro~: sc1-~2 otrier fur~ct;urial urtit..

To avoid conflicting use of a register the follr,v1-
ing criterion must be satisfied:

Criterion 3: For every register x, a functional
unit u~ir.g x as a receiving register
must have higher priority t!J2n any
other function21 unit using x as a
temporary or passi r;g regi s tu·.

This criterion insures that when a val~e is being
passed in a register, no fu~cticnel unit will use
the register until tl,e val~e has been received.

A microprocessor program organization with inter­
ruptable functional units ~as rejected because:

(1) Registers to hold return links to inter­
tupted functio~al units are expensive.

(2) In general more working storage ~ould be
required.

(3) The nature of the functions•wider consi­
deration does not require i1r,;,ediate re­
sponse even for high priority functions.

The following topics are not discussed in this paper
due to lack of space.

456

(1) Hhat can be done alsut the heavy !/0 1n­
_ terfacir.g register !-eq,iire;i:E:nts of a
mi ci-oprocessor.

(2) \!hat are ir.·port;.:nt epa:;ilities for miu-:,-­
processor instr·t;ctio.-iS tr1 hct\'E.:' ..

(3) Details of microprogram.1ling techniques
to irnplernent specific types of functic:1-
a 1 uni ts.

5. EXNWLE

A simplified example of the applicatio~s of a
multi-microprogra1~ned rni~ropr?ccssor_w1ll now be
given. All the 11u,11bers rn tins section arc con­
trived for the purposes of the cxa~ple. lh~ ..
microprocessor is assumed to have character1SLlCS
approximating:

f) 150 ns instructir:•n c~·r;lp time

.b) 2K mi crocodc meu,ory ViOrds

c) 24 hi~h-speed ~egistcrs

d) A reasonable micro-instruction set

This microprocessor plus the fo1lov1ing listed
items will be the only hard~arc required by a
hypotheti ca 1 61, .• user dedi catccl tiIT,?-~hari r.g sys­
tem giving 2 second response to tr1v1al requests:

a)

lJ)

c)

32 K words of 1 sec primary r.1':'Hrory inter­
faced directly to microprocessor 1/0
regi s tcrs.

64 ter;ili nals each of v:hose serial data
lines are latched to a single ~it within
mici,0;,r~,cc'"Snr I/0 n'gister~.

Seconc1ary storc.:ge d,,vice (disk or drui;,)
with a trans fer rate of 1 word every 12
sec. Control lines fro:n the device are

~atche~ directly to a microprocessor 1/0
register. Data lines arc routed thrct:;h
a serial-parallel/parallel-serial con­
verter to an I/0 register.

The microcode is initially partitioned into four
functional units:

(1)

(2)

CPU. This functional ur.i t emulates the
order codes and addressing structure of
the machine presented to the user. This
functional unit can al11uys run since
there are ah1ays instructions to execute.
Its function is to execute the instruc­
tion in n,emory designated by the p-counter
and then return lo the sch2duler. The
CPU is the functional unit with lowest
priority. The qua11tities Ta and Tw do
not apply to the CPU.

Disk Transfer Unit. This unit is re­
sponsible for transfering words of data
beh:ecn the disk and prirr:ary ri,emory. The
disk hardware must raise the attention
flag for this functiqnal unit 1·:hen it
has another word read from the disk or is
ready for another 11ord to 1-;ri te on the
disk. The unit l'!i 1l count the number of
words transferred and then notify the
disk control functional unit ~~en the
transfer is complete by raising its
aLtention flag.

(3)

(4)

Disk Control Unit. This functional unit
is· respor,silile for starting a data tra1'.s­
fe1· and handling disk error conditions.
Its illtention fli:ig is set by the disk
ti-ans fer unit 1·:hcn a trans for is co;11plet­
ed and by the hard'::are ~1hen a disk arm
n.ove is completed or when a sector gap
is reached. The unit.issu2s co:tr.'ancs to
the hardt·,are to start ann rnovernents and
datc1 tr"ansfers. It a1so senses the state
of the disk ilnd indicates error conditions
to the CPU.

Ten11in,1l Mt•1tiplexor. This unit is re­
sponsible for sending and receiving bits
of information fro:11 the terminals con­
nected to the systen1. The unit performs
bit serial to parallel convers~on and
manages a character bt:ffer for each terr.1i­
nal. 1he attention flag is set by an
external clock often enough to properly
sample the input lines.

Tc.ble 1 sho;,;s the ti1ning and high speed register
rci1ufrements of each functional unit. The i;,lits
of,time are microseconds

It is clear that this organization violates the rr"­
viously given thrin9 criteria. TE'(CPU) is 20!.sec.
twcause there arc SO,i!C ins:ti"uctions (e.g., mult,ply

- • • •) ' • • ' , · l , 1·• ; · .. ,. ,,~ ar.d d1v1d2 ;n11c:-: 111uy tar:..c tna.t OLSJ. d1.:, ri.~ .. J l•'-

s0l\·ec.: Gy crct1t·i111:1 nc~·, funct it~nal 1_.nit··• fc1r ~<icii
instruction ti1at will take more than, s6y 5 sec.
Then \'1henever a long instructior, is d,~cod2d li_y the
CPU functional unit, the attention flag for the ap­
rronriatc new functional uni• will b~ raised and
control \·ii 11 be transferred tc the scheduler.
Each of these no: functional units vii 11 be fu,-trer
subdivided so that they 1,ill never execute too long
t:ithout returni1~g confrol to the scheduler. The
multiplexor may also be wodularized in a ve 1~ .

natural way (scanning only a subset of the lines 1n
each sub functional unit.)

The above ~edifications have solved the timing pro­
blems. To allocate registers pro?erly, we must
share the teqlorary registers used by the CPU a:1d
r,1ultiplexor. This can be done by guaranteeing that
the CPU and multiplexor (and their functional un~ts)
never intersperse execution. The modified organi­
zation is shm·:n in Table 2. A prio,ity 01·deri~g
which satisfies the three criteria is transfer Dhit,
control unit, multiplexor 2, multiplexor 3, ~ulti­
plexor 4, multiply 1, multiply 2, multiplexor 1,
CPU.

CONCLUS I O:l

1his short paper has demonstrated the feasibility
of using a single microproc£'ssor to perform ~cve:·al
sophis Li cc:ted tasks. The 2uthors 1·10ul~ be _p_iecsed
to cc,,sult en the subject in more deta11 v11 tn tr,ose
interested in applying thc$e techniques.

457

TAGLE l

D2di cated Ten,,i. Passing - Rccei vi ng
Te Ta Tw Regist!:rS Reg. Reg. Reg.

CPU 20 15 6 0 0

Multipl€:xor 35 250 1000 0 6 0 .0

Transfer 2 10 12 2 0 0 0
Uni l

Control 4 30 12000 3 0 0
Unit

TABLE 2

Dedicated. Temp. Passing Receiving
Te· Ta Tl'! Registers Reg. Reg. Reg.

CPU 5 15 0 6 0

Multiply 8 0 0 6

Multiply ? 8 (J 6

Mul tip.lexor l 9 190 1000 2 6 0

Multiplexor 2 9 20 1000 0 6

Multiplexor 3 9 20 1000 0 6

Multiplexor 4 9 20 1000 0 6

Trans fer 2 10 12 2 0 0 0
Unit

Control 4 30 12000 0 3 0 0
Unit

458

