
Inter:process Con:µnunication

I.. Introduction.

Working Document
David Redell
July 20, 1972

Two properties which experiment programs. require bf the CRMS system

are;

A. Ease of parallel programming.

B. High reliability.

Various mechanisms have been provided in general-purpose timesharing

systems to insure these two properties. In particular, these have

included:

A. Synchronization and intercommunication between cooperating

parallel programs.

B. Protection among the various programs and users, allowing precise

control over their interactions.

A serious problem with these mechanisms is frequently their overhead

cc,st ~ ria.rticularly in terms of processor time. Often, programs which

could benefit greatly from the use of these features are written to

painfully circumvent them, in order to avoid the prohibitive overhead.

In general, this overhead arises from two sources:

A. Excessive complication.

B. Software implementation.

In an attempt to avoid this overhead, the CRMS system provides a

unified parallelism and protection mechanism which is:

A. Simple, yet quite powerful.

B. Implemented primarily in firmware.

2

The basic computational entity within the system, for both paral

lelism and protection purposes, is the process. Processes execute

processor instructions to interact with other processes, just as

they would to perform an addition or a transfer of control. Most

of thes.e operations fall within the Interprocess Communication

mechanism, as discussed below. The separate, but related, protec

tion mechanism is described elsewhere.

II. Goals.

The firmware-supported Interprocess Communication mechanism (IPC)

is designed to meet four goals:

A. To allow coordination of cooperating parallel processes.

B. To provide a general "monitor call" operation, allowing soft

ware services to extend the machine in a flexible and general

way.

C. To handle traps, i.e., errors made by a running process, which

the process itself is unable/unwilling to handle.

D. To replace interrupts as the interface between software and I/0

devices.

The IPC, as described below, provides for the synchronization of

processes, and the transmission of messages between the address

spaces of processes, with intermediate buffering provided when

appropriate. The mechanism consists of firmware capable of handling

the optimal (and, hopef'.ully, most frequent) cases, and of software

to handle the more difficult situations. The firmware uses its own

trap mechanism to allow a graceful escape into the supporting

software when necessary.

3

Within the same conceptual framewo~k, somewhat different facilities

are provided by the two processors, reflecting the different

orientations of APL and SIMPLE. Generally speaking, the SIMPLE

processor provides a larger set of low-level firmware IPC operations,

while the APL processor relies more on trapping to software (written

in SIMPLE) which provides APL-language-oriented communication

operations.

III. Intervention Operations.

The simplest kind of interaction between processes occurs when a

superior process intervenes in the affairs of a subordinate process.

In a sense, this is not really interprocess communication at all,

since only the superior process is actively participating, while

the subordinate process is passively manipulated. Such interven

tion occurs, for example, when the debugger stops a subordinate's

endless loop or when the memory manager suspends a process in order

to swap out its memory. Usually, the intervention occurs in three

steps:

A. Stop the subordinate process.

B. Examine and/or modify the process in some way.

C. Start the process running again.

Here, we are concerned with steps A and C , which are generally

necessary to insure the consistency of step B Two processor

operations are provided, called Stop and Start. When a process has

been stopped by another process, it cannot run under any circumstances

until it has been started again, normally by the process which

stopped it.

4

IV. Messages.

A. Format.

A message is a variable length sequence of capabilities and

data. It is represented in memory by a sequence of two-word

descriptors. Each descriptor represents an item in the message

as follows:

1. Datum:

a. A one-word scalar is represented by a two-word

immediate descriptor.

b. A two-word descriptor is represented by itself,

2. Capability:

A capability is represented by a two-word capability

reference (i.e., pointing into C-list of the process).

B. Transmission {see f:i;gure ll.

A message is transmitted from the top of the sender's stack

to the top of the receiver's stack. Ideally, the transfer is

done directly from the sender's data and capability segments

to those of the receiver. This is the optimal case handled by

the firmware without any software intervention. Buffering and

synchronization considerations may require traps to software

in other cases.

V. Message Operations.

A process uses the message mechanism by executing one of several

processor operations. The basic operations are send and receive;

the others are best explained in terms of these two.

5

Send and receive function in matching pairs. Whenever a send-

receive pair is matched, the message is transferred from the sender's

memory to the receiver's memory. When a send (receive) is executed

before its matching receive (send), the process is blocked until

the matching operation is performed. A variant of the send operation,

send-buffered, allows the sending process to continue computing

even if the matching receive has not been performed. This is done

by trapping to software instead of blocking the sender. The soft

ware can buffer the message until the receive is executed. Note

that the software is only invoked when buffering is necessary; if

the receive precedes the send-buffered, the direct firmware trans

mission takes place as with a normal send operation.

In order that a receiving process may exe~cise some control over its

reception of messages, each receiving process is equipped with a

number of ports. Both the send and receive operations require as

a parameter the port on the receiving process through which the

message is to be transferred. The receiver specifies the port via

an unprotected integer, while the sender must present a destination

capability which specifies both the receiving process and the port

number. Thus, the receiver retains firm control over incoming

message traffic.

The send-receive mechanism outlined above is essentially adequate

to serve as a monitor-cell mechanism. (i.e., user program sends

"r.equest" message to monitor, which performs service and sends

"response" message back to user)/; To protect its elf from unwanted
., ___ j

6

blocking, however, the monitor must use the send-buffered operation

to send its response message. Actual buffering of the data should

not be necessary, of course, since the user program will normally

wish to wait for the response before proceeding. To insure that

the entire transaction can be handled by ~irmware, it suffices to

provide an atomic send-receive sequence, called exchange, to be

employed by the user program in calling the monitor. By atomically

sending the user's request and receiving the monitor's response,

the exchange operation guarantees that the user will ask for the

response before the monitor sends it, eliminating all intervention

by the buffering software.

VI. Traps.

Occasionally, during the execution of a process, the processor will

detect an unusual condition which requires the attention of some

responsible program. A flexible trap mechanism for the selection

and activation of this program avoids the proliferation of ad hoc

mechanisms to deal with each case individually.

When generating a trap, the processor first pushes onto the trapped

process stack certain information identifying the condition which

caused the trap. It then examines the relevant trap-mask entries

to determine what process should handle the trap.

A process may want to handle certain of its own traps. In this case,

the trap is treated as an implicit function call, whose actual pa

rameters are the information identifying the trap. Otherwise, some

superior process must be located, the trap-mask of which is set for

the trap being generated. The tre~ of processes induced by the

father pointers is scanned upward (toward the root) until such a

process is found. Two actions are then performed atomically by

the processor:

7

A. A message is sent from the trapped process to the superior proc

ess on port 0. The message consists of the trap information

previously pushed onto the stack, and a capability for the

trapped process, which is fabricated by the processor.

B. The trapped process is stopped.

The superior process can then take corrective action, if possible,

and restart the trapped process. (see figure 21

A processor operation is also provided which simply causes a trap.

The main use of this facility is by APL processes as a request for

service from the APL external runtime process. (The regular ex

change operation is not usable by APL processes since they have

no capability lists.)

Since a trap normally occurs during the course of an instruction,

the trapped process is stopped in a somewhat different state from

a process which has been stopped by another process. The program

counter of a trapped process points "at" the offending instruction,

rather than "between" instructions. The process which handles the

trap may specify (as a parameter to the start operation) whether

the offending instruction is to be restarted or aborted.

8

VII. I/0 Devices.

By re~ucing scheduling overhead, the firmware IPC improves the reac

tion times of processes sufficiently to allow direct control of each

I/0 device by a process, rather than by the conventional "interrupt

routines, 11 which must be activated by a ,special mechanism, separate

from that which schedules the rest of the processor's work. Each

hardware device has a firmware controller and a software manager

process. The interactions between the controller and the manager

process are implemented as a stylized form of interprocess

communication.

From the point of view of the process, messages are sent and received,

and data is passed through shared memory. The controller appears

to be another process (and can, in fact, be simulated by another

process for testing purposes).

From the point of view of the controller firmware, a number of

facilities are available which allow it to masquerade as a process.

A dummy entry in the process table allows the controller to send

messages, much as a real process would, by calling a firmware

routine. The process table entry of the manager resides at a fixed

location in memory, as does the communication area. (The system

initialization software is responsible for creating the manager at

the proper spot in the process table, with the communication area

in its address space.)

VIII. Various Details.

The previous sections have described the IPC from an external or

9

11top-down" point of view. What follows is a brief "bottom-up" dis

cussion of the major internal components of the IPC.

A. Process Table (see figure 3).

Each process in the system is represented by an entry in the

process table. This process table entry (PTE) contains the

stateword of the process when it is not running, as well as

various other scheduling and addressing information. The PTE

of a process is core-resident; all other components of the

process are segments, and are thus swappable to the disk.

B. Ready-list (see figure 4).

Each processor has a ready-list in memory, containing all the

processes which are requesting service on that processor. Each

ready-list is structured to represent the various priorities of

the ready processes, and each processor is to run, at all times,

the highest-priority process on its ready list. Microcode

primitives are available to insert and remove processes in the

ready-lists; these are used by the higher level IPC operations

(send/receive, stop/start, etc.). Since each processor can in

sert processes in the other processor's ready-list, a pre-emption

signal line is provided, allowing a processor which inserts a

new highest-priority process in the other processor's ready-list

to so inform the second processor. This is the only hardware

signal line between the two processors.

C. Quantum Timers (see figure 5),

Assigned to each process is a time quantum, which represents the

10

C. expected time that it will run when serviced by the processor.

Whenever the processor begins running a process, this quantum

is stored in a special memory cell, where it is decremented every

millisecond. If the cell ever reaches zero, a quantum-overflow

trap is generated, and software is ~nvoked (presumably to reduce

the priority of the process and increase its quantum).

TOP

• • .

TOP

Rece\ver•~
S-h,-ck..

Rec..eiver1 s
s.+o..ck

• • ..

j ele,,,,e.'lt: \e.~th:
I t-d~ '"Tl.,

PROCESS TABLE ENTRY:

Unique name

Father pointer

Scheduling data
Processor type (APL/SIMPLE)
Priority
Quantum
State

Message Data
Message size
Input port#
Output port#

Link data
Readylist links
Send-queue links

Address Space Data

Processor Stateword

Total

words

1

l

1

l

2

2-3

6-8

~)(qm r \ e ~

t'v-oc.ess T h~s Ca.'.Jsed. a_

tro_.p, w~\c~ wi \l be havJleJ
~~ Proc~~~ S.

approx 16 words

'Pv-oc.ess

10.bk.
En4ries

1\. 3 • • • •

A D

B

C

Note:

1) At priority 1, processes A, B, & Care ready
At priority 2, no processes are ready
At priority 3, processes D & E are ready
At priority N, processes F, G, & Hare ready

N

F

G:

H

2) Given this situation, the processor should be running
process A, which is the first process in the highest
priority chain of the ready list.

t \ j_

0

..L
il$

,l;j
J.d

vo
-~

~
d

.,_ 1-

.J
j:.
.::s

.lciW
3-32:ld I

•

cJ

..:.

t-

,..L

lL

....--

~
l-----t---:J.c::3

,--.S
:-l"-I 1 s: ~ ::,

0

I-
-
:_

-
-
-
-
-
+

-
-
+

-
:-

:=
-
~

-
i

~
(
J

<
C

-

V
J ~

1.
J C

"

LL

