
CRMS APL/SIMPLE

Integrated Language Processing System:

Design Considerations

I. Introduction.

Working Document
David Redell
July 22, 1972

An interactive language system consists of several components, which

provide various facilities for program development (e.g. editing, debugging).

Existing language systems generally take one of two approaches regarding

,the organization and interaction of these components:

A. Modular Approach:

Each component of the language system is a separate and independent

program. This has the advantage of allowing the user to freely ahoose

a language and compiler, and to use these in conjunction with the

standard (or the user's own) editor and debugger. The problem with

this generality is often a kind of "lowest-common-denominator" ef:f'ect,

due to a lack of uniform conventions regarding the format of the

object program and its data, and the correspondence of these with

their source-language counterparts.

B. Integrated Approach.

The various components of the language system are considered to be

parts of an integrated package, which processes a single language.

Detailed conventions are established for the format of the program,

allowing the user to operate at a high level at all times, ignoring

low level details (raachine instructions, octal dumps, etc.) which

obscure the user's view of his program. A major problem with the

integrated language system is the specialized orientation of its

components, ~hicb generally precludes their use individually, or

in a system for another language.

2

The CRMS language system attempts to compromise between these two extremes.

Two integrated language systems are provided, one for APL and one for

SIMPLE. By careful parallel design, it has been possible to establish

very similar conventions for program formats in the two languages, with

the result that many components of the two systems can be shared.

The integrated-system approach is particularly crucial in the case of

APL. The primary users of the META-APL language will be experimenters

and their assistants, whose progress must not be impeded by irrelevent

details of machine language debugging and so forth. The original APL/360

system provides a set of tools for source-language-level program development;

META-APL, while differing in its command language interface, provides a

similar (but rather more powerful) set of tools.

A further advantage of the compatibility of the APL and SIMPLE language

systems is the relative ease with which an APL programmer can learn to

use the SIMPLE system. The more sophisticated experimenters may eventually

wish to program their own versions of various support routines (e.g. ::_

input/output managers for special devices) which run on the SIMPLE processor.

They will be aided in this by the compatibility of the two language systems,

and by the flexibility of the operating system, which allows graceful

replacement of such routines on a per-user basiso

II. Facilities Provided.

An integrated language system smoothes over the traditional divisions

between "editor", "compiler", and "debugger". Nevertheless, these divisions

are still rather useful, both as guidelines for system organization, and

as cate.gories for discussion of the facilities offered.

3

A. Editing.

The editing facility allows the user to create and update source

programs by locating, inserting, deleting, replacing, and modifying

lines of text. In keeping with the function/global block structure

of APL and SIMPLE programs, the editor considers the source text to

consist of a sequence of blocks. T'nus, line addresses are triples:

((program,block,line#). At any given time, the language system

considers some one line to be the "current" line, at which point

·insertions, replacements, and other changes can be made. Various

commands shift attention to a new current line. Most important are

the context-search features, which scan the text (either current

block or entire program) for a,line containing a desired substring.

The current line and context search features of the editor are

useful more generally in the language system (e.g. for locating

the desired line for insertion of a breakpoint).

B. Compiling.

The compilers for APL and SIMPLE present a uniform internal interface

to the other components of the integrated language system. The user

of the system interacts with the compiler somewhat indirectly, via

commands to the other components. There are essentially two user

actions which invoke the compiler:

1. Program Modification.

Editing of the source text causes automatic recompilation

of the modified block (or, when necessary, the entire program)

when execution is begun or resumed.

2. Immediate Statements.

Statements typed in by the user for immediate execution are

compiled in the context of the currently active function and

executed individually, whereupon control returns to the user

at his console.

C. Debugging.

4

Probably the most complicated part of the language system, at least

from the user's point of view, is the debugging facility. Some

complexities here are intrinsic (e.g. multiple activations of

recursive functions) but, as far as possible, purely implementation

dependent complications are hidden. All addresses in the object-code

are translated back into source line addresses, using a table

constructed by the compiler. Addresses in data areas are translated

back into symbolic names, using the compiler's symbol table.

Breakpoints, statement tracing, and function tracing are all

available, and are always referred to in terms of the source text,

rather than object-code addresses.

D. Command Interface.

All commands to the system are interpreted by a single "front-end"

module, which calls upon the editing, compiling, and debugging

modules to perform the required actions. This localization of

command interpretation is designed to unify the command language

and ease modifications as they become necessary. Eventually, a

macro-command facility will be provided to further ease the development

of programs using the integrated language processing system.

•

