
CRMS .A.PL PROCESSOR

ru;FEREN CE Y.,A''JU.JI.L

Paul McJones

Febiuarj 2, 1973

Systems Group

Technical Document

Center For Research in Management Science

University of California

Berkeley

This work was done as part of the Systems Development effort under
National Science Found&tion Grant GS-32138.

TABLE OF CONTENTS

1. Introduction .

2. APL Objects

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

Floating-Point Numbers ..
Integers . .
Characters . .
Arrays
Indirect Parameter Words .
The "Undefined Value"

3, The Data Segment

3.1.
3,2.
3,3.
3.4.

Processor State Area .
Global Variables ...
Runtime Stack
Array Block Storage

4. The Procedure Segment

.

4.1.
4.2.

Function Blocks and the Function Directory ..
Components of a Function Block

4.2.1.
4.2.2.
4.2.3.

Function Block Header
Code
Line Table

5. Controlling the APL Processor

6. The Instructions

6.1.
6.2.
6. 3.

Operands, Results, and Reference Counts
Traps
The Individual Instructions

The FETCH Family , ..
The MEMREF Family
The GENSCALAR Family
INDEX . . , .
SHORT CONSTANT .
The El'C Family .

.

Appendix 1: Index to the APL Instructions

1

3

3
5
5
5
7
8

9

9
13
13
16

22

22
22

22
25
25

26

30

30
30
31

33
36
41
49
50
52

69

Appendix 2: Summary of Trap Classes and Numbers 70

Appendix 3: Array Block Storage Allocation Algorithms 71

1

1. Introduction

One of the major goals of the new CRMS computer system is to provide

efficient, time-shared APL. 'The system contains two processors with common

main (core) and auxiliary (disk) memories, as well as controllers for a

variety of peripheral devices. One processor (the primary subject of this

document) is specially tailored for the execution of APL programs. The

other processor is optimized for executing programs in the SIMPLE programming

language and is described elsewhere.

Rather than directly interpreting source language character strings,

the APL processor executes an internal "machine language" form adapted for

that purpose. Three types of changes are involved in the mapping from

external to internal APL:

(1) (literal notation > binary notation) Each numeric or

character literal is replaced by a binary encoding of the

number or character.

(2) (identifier -> variable address) An arbitrary

correspondence between the identifiers of a program and

uniQue consecutive integers is formed; then all occurrences

of an identifier are replaced by its number (address).

(3) (infix => postfix) The expressions are reordered so

that an operator follows its operands instead of preceding

(monadic) or separating (dyadic) them.

These changes are made for technological rather than logical reasons.

Arithmetic can be performed much faster on operands in binary notation than

in decimal notation. Similarly, binding identifiers to addresses in advance

saves time for the processor, and the resultant addresses are in general

more compact than the identifiers they replace.

2

Programs exist for the SIMPLE processor which translate external to

internal APL and perfonn the concomitant editing, debugging, and "system"

functions. Thus the sole responsibility of the APL processor is to execute

internal APL programs, and, indeed, this processor is capable of nothing

else. Since the two processors share core memory, programs and data

prepared by the SIMPLE processor are directly accessible by the APL processor.

This manual assumes familiarity with APL\360; for example, see APL\360

Reference Manual by Sandra Pakin (Science Research Associates, 1972).

3

2. APL Objects

APL is a language for expressing algorithms which manipulate numbers,

characters, and n-dimensional arrays. In this section we will describe how

these objects ar~ represented internal to the APL processor.

Every value occupies a single 32-bit word. Because of the dynamic

nature of APL, stemming from its lack of compile-time type declarations,

each value must carry explicit type information at run-time. Thus type bits

and value are packed.together into a 32-bit word or descriptor. In Figure

2.1 are illustrated the formats of the various types of values; some

further explanation is in order.

2.1. Floating-Point Numbers

A floating-point number consists of a signed, fixed-point coefficient

(with the radix point lying between the first and second significant bits)

and an "exponent" or power-of-two scale factor. If F is a floating-point

number whose sign, fraction, and exponent are, respectively, s , f and e

(all taken as unsigned integers), then

F = (1 - 2s) . (1 +f....). 2(e-l2B)
222

As can be seen from Figure 2.1, all floating-point numbers are "normalized,"

that is, if c = (1 +f....) is the coefficient of a floating point number
222

Equivalently, the "leading" bit of F (the

first bit after the sign of F) is a one. The bit patterns corresponding

to unnormalized numbers are thus available to encode other types of values;

Figure 2.1 shows how the type field of a value not a floating-point number

is used.

4

1 1 u. •
(sl1I .f* I e) {l.cdi~-~i--\

l11A.~l(.

1 1.1

I [sJolilo lo lo lol olol tw\Cl~l\t~e '"~err ~co.le..-
t •

I

• s • I 16

lololol1 ~lolol oJ 0 I cede I ~o.tac-kr
I
t ~. . "

I
. .,._., ·-. . -·· ·····- -- .

' fl 16

~101°1°1110 lnla I 0 (a,!dr~ss I o.~r4y
I I
I I
I I
I ' :, 1 16

)ololololol1lol~ 0 111 o.dclress I ihclired pa.r•~ier wcrcl ..
I I
I I
I I
I I

2.4 I

lololololololtlol 0 I 11CA.ndef int<l vo.f "'e" • •
:-E-1 bi.~~---+:

4 The coettide.~t oi Q; t(~ti~-poh,i t'\u.~ber cov.sis-b o1 o. l~"1i""1 "1" bi.t to{kwtcl by
+~, f (fr11,t·,o~) { ielcl, _ . ·

5

2.2. Integers

An alternative representation for integers of magnitude less thap 223

is available. In particular, zero must be represented in this format since

it is not a normalizable floating-point number. A point concerning zero js

that it is always represented with the sign bit s = 0; "minus zero" is not

allowed.

2.3. Characters

A scalar character is represented by an 8-bit code chosen from an

extended-ASCII character set which includes the special characters necessary

for APL.

2.4. Arrays

A descriptor for a scalar (numeric or character) might be termed an

"immediate descriptor" since it completely specifies the identity of its

value. In contrast, an array descriptor merely points to an array block

stored elsewhere which contains the elements and shape information of the

array. This scheme has two benefits:

(1) All descriptors are a uniform one word in size;

(2) Several distinct·array descriptors may point to the same

array block.

The form of an array block is given in Figure 2.2. Following is a description

of the various fields.

The .I:..sllJk of an array is the number of dimensions it has; the numbers

length , length , ... , length nk in the array block are called the shape
1 2 ra

of the array and must be regular integer-type descriptors for nonnegative

numbers. If the value of length. of an array equals n, then there are n
J.

HEADER

SHA?E

~AVEL

• • •

j_
2

I
• NJ¾s

1------e-kwre'""!'--:-M-----IT l

APL Arro.y fo~o.t

Fi~v.re 2.2

6

elements along the i th coordinate of the array; the total number of

elements in the array is

Nelts =
rank

JI
i=l

length.
J.

The cases Nelts = 0 and Nelts = 1 are both possible.

7

The elements of the array may be any scalar descriptors, and are stored

in a linear sequence known in APL as the ravel of the array. Since it is

possible for several array descriptors to point to the same array block, a

reference count is used to determine when the storage for an array block may

be released. This count is a field in the array block giving the number of

array descriptors currently pointing to this array block; it is updated

whenever such a descriptor is created or destroyed. If a reference count is

reduced to zero, then the storage occupied by that array block is returned

to a free pool.

2.5. Indirect Parameter Words

These descriptors are not for ordinary values, but are used in

conjunction with call-by-reference parameters to functions. Each contains

the identity of a local or global variable, and itself resides in a call-by

reference formal parameter variable of some function; references by load and

store instructions directed at the formal variable instead affect the

variable identified by the indirect parameter word. The variable to be

affected is ic.entified by one bit (labeled "seg" in Figure 2.1) signifying

local or global (0 => local, 1 > global) and sixteen bits specifying an

address. For a local variable, this address is relative to the state

variable SBASE (see Section 3.3); for a global variable this is just the

ordinary address of that variable in the data segment.

8

2.6. The "Undefined Value"

This descriptor (which is defined!) is used to initialize global and

local variables so that references to variables which haven't been explicitly

assigned a value will cause a value error tr1=tp. The processor automatically

initializes local variables with a descriptor for the "undefined value";

such initialization for the global variables must be done in software on

the SIMPLE processor before starting the APL program.

9

3, The Data Segment

A program for the APL processor consists of a pair of procedure

segments together with a data segment. The procedure segments (described

in Section 4) ccntain reentrant code, and express the invariant algorithm

of the program. The data segment, on the other hand, contains all the

storage used to run the program: that occupied by the variables of the

program as well as that used by the processor for its internal data

structures.

Figure 3,1 shows the overall layout of the data segment. (Higher

addresses are toward the bottom of the figure, as is the case throughout

this document.) The region labeled "global storage" holds information

accessible throughout the execution of the program, and is statically

allocated before execution begins. Local storage consists of information

for each of a sequence of function activations. It is allocated using a

last-in-first-out discipline dictated by the nested activations of functions

resulting from the flow of control through the program. Finally, array

block storage contains arrays each of which is referenced by one or more

variables or temporary cells. Space in this area is dynamically allocated.

3,1. Processor State Area

An assortment of state variables used by the processor is gathered

together at the beginning of the data segment (see Figure 3,2). The

individual state variables will be described in the sequel: SBASE, LTOP,

and LBASE in Section 3,3 (Runtime Stack); TRAPCLASS and TRAPNUMBER in

Section 6.2 (Traps); saved-NELTS, -OPNO, -APTR, -BPTR, and -RPTR in

Section 6.3 (under The GENSCALAR Family); and ROVER and BLOCKPTR in

r

--------,0

.___ _____ __,. Oo

APL DJ~~~J

f="~lij'C 3.1

10

'"
,,

'58A5£ LTOP

Fl~ LBA~E

TRAPcLASS Tf<,\fN!JMStR

5q_\A!J-NaIS ~-CjPNO'

.so. .. ~APTR ~iJeA-'BPTR

~~-RPTI<

RCVE.R

8l.C(J(PTR

Afl Prc:rJeS60r Sto.-\e A'r!A

tij~C 3.C.

11

0

4

11 ~w:uy 13

F
C ,; I
N T to/
~ E R
~ P G
C

12

j~l(O~f~,~ tit' =1
Jer Mok if 1

~1icm~1w.c.e~ if1
twat.-\io,-, aJl k \4\ode if 1

~ \f +k p~~r is ~tC)yped w~~ FlAqS~ItJTRPT:;-1, l~ ~~
~~v-~ry ~-..ts ~14.St l\at ~ ~fd.

APL Pro~ 9-Jt. FLAG-5

r,,u.re. 3. 3

13

Section 3. 4 (Array Block Storage). This leaves FLAGS, which is really a

collection of one-bit variables, as shown in Figure 3.3. lORG is the APL

index origin (see Section 6.3, various instructions). FCNCTRC and FCNRTRC

control function call and return tracing (see Section 6.3, CALL and RETURN).

STEP controls step tracing, another debugging tool (see Section 6.2, step

trap). INTRPT and the "tem.porary11 flag bits are discussed in Section 6.3

under The GENSCALAR Family.

3.2. Global Variables

Each global variable in the program is allocated a single cell in a

special area of the data segment. This cell contains a descriptor for the

value of the variable, be it scalar, array, or "undefined." Global

variables are addressed by integers larger than seven. The addresses zero

through seven are invalid since they correspond to the cells of the processor

state area. Note that when execution of a program begins, each of the

global variables should contain the standard "undefined" value (see Section

2.6, The "Undefined Value"); the processor does not itself initialize these

variables.

3.3. Runtime Stack

As was mentioned earlier, the processor maintains a pushdown stack for

storage local to each function activation. As shown in Figure 3.4, a stack

frame (entry) contains one word for each formal parameter or other local

variable, two words of local processor state information, and a variable

number of words containing descriptors for temporary values. At any moment

the most recently activated function is being executed, and its stack frame,

called the current frame, is on top of the stack.

I
I

I - I

I - I

I! ~ ~

~Q f4'CUI\Je- ~w.b

~j~.r ~ ~~
it. 1& .

~~t l..PASf. -- -- - ---fc..r-c.tioh des{.f;l\..- PC.1"r.t

. -

,.~

~~'-1~

APL R\,l'.<lt ... , Sta.c.k

Fij1.tre 3. t

...

14

l 0

t
"

I•

I=.'

I"

15

Several state variables are used to delimit the stack. SBASE contains

the address in the data segment of the first word of the first (oldest)

stack frame, and is never changed by the processor. LBASE always points

to the cur~ent stack frame, and LTOP points to the topmost temporary value

cell of the current frame. These two state variables contain addresses

relative to SBASE, easing relocation of the stack within the data segment.

The processor updates LBASE for each function call or return. LTOP is

decremented by the various processor instructions when they remove their

operand(s), and is incremented when they stack their result(s).

LBASE points not to the first word of the current frame, but to the

first word of local state information. The local variables are addressed

by negative integers (-1, -2, etc.), which the processor interprets

relative to LBASE. If a function has a result variable, it is always

assigned the address -1 (so the result variable is in the cell immediately

preceding the first word of local state information).

The local state information in a stack frame merits some discussion.

Since stack frames are not of constant length, some form of backpointer is

necessary. This need is filled by the "last LBASE" field, which contains

the value of LBASE for the function activation immediately preceding in the

stack. The "function descriptor" and "PCTR" fields in a stack frame refer

not to the preceding activation, but to the given one. These fields

identify, respectively, the function activated and the location in that

function of the next instruction to be executed. In the context of a given

program, a function is identified by one bit to select between the two

procedure segments together with an 11-bit integer designating one of the

functions in that segment. The location of an instruction is always

specified as a byte address in the containing function block of the first

byte of the instruction (which may be one or more bytes long). In this

manual, unqualified mention of the state variable PCTR will always refer to

the field of that name in the current stack frame.

3.4. Array Block Storage

Descriptors for array values exist in various parts of the data segment:

in global variables, in local (and formal para.meter) variables, and in

temporary stqrage cells. The actual arrays, however, are gathered together

in array block storage. Space in this region is dynamically allocated using

a scheme of "boundary tags and roving free pointer," as described in 'l'he Art

of Computer Programming, Vol. 1, by Donald Knuth (Addison-Wesley, 1968).

Array block storage consists of a sequence of reserved and free blocks.

Each reserved block contains an array, whose reference count field is by

definition nonzero. (See Section 2.4 for the description of the structure

of an array per se.) As the name suggests, free blocks contain space

available for future use. In the interest of avoiding fragmentation of

storage, no free block is allowed to exist adjacent to another free block

(see Figure 3,5 for a typical configuration).

When the array in a reserved block is no longer needed, there are four

cases to consider:

(1) Both the preceding and following blocks are free; the block

being freed should be coalesced with both its neighbors into

one Qig free block.

(2) Only the preceding block is free; it should be extended to

includ~ the following newly freed space.

Free

Re,er..,ed

P.e~eJ

me

Reser11ed

Free

•
L!:: ~ • D'

•

Free.

Du.W\Ml

ljp·,c~(APL ~y St OI"Ajt c~f~v-ro.iio~

Fij\(.r! 3.5'

17

(3) Only the following block is free; it should be extended to

include the preceding newly freed space.

18

(4) Neither the following nor the preceding blocks are free. The

bloc1: being freed cannot be coalesced.

Figure 3.6 shows the format of reserved and free blocks from the

allocator's point of view (thus leaving out the details of the array in a

reserved block). Note that given the starting location of a block, it is

possible to tell whether the block is free or reserved (since the Boolean

field THISFREE occupies the left-most bit of the first word of every block).

Also, every reserved block has another Boolean field, PREVFREE, indicating

whether the preceding block is free. With these fields and the SIZE fields

it is possible to discriminate between the cases (1) through (4) listed

above.

All of the free blocks in the array block storage area are joined into

a doubly linked ring using the NEXT and LAST fields appearing in every free

block. The state variable ROVER always points to some member of this ring.

To ensure that the ring is never empty (so the value of ROVER is well

defined), there is a dummy free block with an indicated size of zero which

can never be allocated. This dummy free block serves another purpose. It

lies at the very end of array block storage, and has its THISFREE bit set

false(!) to inhibit coalescing with the last real block. Figure 3.7 gives

a typical configuration of the free block chain.

Note (in Figure 3.6) that a reserved block may end with several words

of "slop" which are not necessary to hold the actual array. A field named

SLOP in the first word of the block holds the number of slop words, which

incidentally are not counted in the SIZE field. The main reason for slop

--~------------

(T'°"i~,~ (1li+)

!1 G. • · · t

[1\i<<;ff(a (1 b~J

~ 15

1

N£XT

... ,. --

size:

srze:

APL Arr41 $tcr~e ~ & ~ Bled< f~s

Hjure 3.6

------------- ------

19

T

0

APL Arm.ySto~
Typk.o..l Free Cho.i"' ~~{:1~J,oV\

F\9 v.re 3.1

20

\
/ free l:,(ocks

21

~ords is that a free block must be at least three words long; if a smaller

packet of unused words is created (by breaking a larger free block), it

must be attached to the preceding reserved block as slop.

22

4. The Procedure Segment

4.1. Function Blocks and the Function Directory

Just as an APL source program consists of a set of function definitions,

a procedure segment contains a sequence of function blocks. In the interest

of function block relocatability, the procedure segment begins with a

directory each of whose entries contains the starting address in the segment

of the corresponding function block. Thus each function can always be

referred to by a unique ordinal number, even if the lengths of functions

change. Figure 4.1 shows the over-all layout of a procedure segment.

4.2. Components of a Function Block

A function block is the compiled version of an APL source function

definition, and is diagramed in Figure 4.2. The two-word header contains

various flag and fields; it corresponds roughly to the header or "line zero"

of a source function. Next in a function block is the actual code, a

sequence of variable-length instructions. Completing a function block is

its line table, which serves to map APL source statement numbers into

addresses in the code.

4.2.1. Function block header. The fields in the header of a function

block have the following meanings:

CALLTRACE--if this bit is one and the state flag FCNCTRC is also

one, the processor will trap just after executing a call instruction

designating this function;

RTNTRACE--if this bit is one and the state flag FCNRTRC is also one,

the processor will trap just before returning from this function;

: .

• • •

....._ _______ QO

APL Proc~dv.~ ~~i,.\

t='ij~Yt 4 J

23

} J;,..,_to,y estry ll.

} f,....,;,. blor.k 'II.

NLINES

NCOOE

• • •

• • •

APL F' I.Wlc.t• o.\ B \cdc.

F,jv.re 4.2

i'Z.

24

T
2 WOf'dS

1
insh-

.f f'LIN'-~l I z Wotos

1

25

RESULT--if this bit is one, the function returns a value (the contents

of the local variable with address -1);

NLINES--the number of lines in the source function from which this

function block was compiled (also the number of entries in the line table);

NARGS--the number of actual parameters with which this function should

be called;

NLOCALS--the number of local variables (including the result variable,

if any) required by this function;

NCODE--the number of 32-bit words occupied by the code in this function

block.

4.2.2. Code. Instructions for the APL processor are not of fixed

length. Most instructions are one, two, or three bytes long. One

instruction is five bytes long, and another is 2 + 4n bytes long (for

any n ~ 0). Detailed descriptions of each of the instructions is the

subject of Section 6, but it would be appropriate here to state that the

last instruction in the code for every function should be a "RETURN11

instruction (see Section 6.3). This way a function will return if the flow

of control "runs off the end." Following this last instruction will be zero

to three bytes of garbage to fill out the last word of code.

4.2.3. Line table. The sole use of the line table is made by the

"BRANCH" instruction (i.e., APL's monadic right arrow). This table consists

of a sequence of 16-bit elements, ostensibly one per line of source

program. Each element is the function block-relative byte address of an

instruction (presumably the first instruction compiled from the corresponding

source line). Note that the function block-relative byte address of the

very first instruction in a code body is 8, due to the preceding two words

(at four bytes per word) of header.

26

5. Controlling the APL Processor

In Sections 3 and 4 a description of the static states of the data and

procedure segment components 'of a program i::1 glven. Sections 5 and 6 are

devoted to the dynamic aspects of executing u program. The effects of the

individual instructions are given in Section 6; this section describes µow

the processor is commanded to start and stop executing a particular program.

In an over-all view of the CRMS system, the APL processor appears as

ap i/o device to the SIMPLE processor. Five preassigned cells in central

memory and the two external communications flipflops are associated with

the APL processor "device." The flipflops will be referred to as FFSA and

FFAS, and have the following properties:

(i) The APL processor can read (senoe state=¢ or = 1) and reset

(set state to¢) FFSA, while it can set FFAS (to state l);

(ii) The SIMPLE processor can set Fl~SA, and can read and reset

FFAS •

Here are the preassigned memory cells and their usage:

(i) APLCOMWD (457B)--the SIMPLE processor places a command (either

"start" or "stop") here for the APL processor;

(ii) APLSTATWD (460B)--the APL processor places a status code here

whenever it stops;

(iii) APLDSEGWD, APLPSEG¢WD, APLPSEGJ\ffi (461B, 462B, 463B, respectively)

--before the SIMPLE processor commands the APL processor to

start, it sets up these words to describe the data segment,

procedure segment, and alternate procedure segment, respectively,

of the program to be run. Figure 5.1 gives the format of these

"segment descriptors."

27

1& 16

&A~E l LENGTH I
. . .

BAS& l5 +k~ o.~-41v.\ ClJ~ress \"' ce~ic1\ ~or7 ot 1~ -first Wttd o{ ~ ~Jttttii.
LEN4TH ,~ +~-~ lO\JH., ii\ wards, 6'f -H~ &~jw-e~t

se,W\~~1 ~cr;p~ far~Q.i

l=,j v..re S .1

---- ···--- ------------------ -------- --------- ---

The APL processor is always in one of two states, id.le or running a

program--see Figure 5.2. A transition from idle to running occurs only

28

when the SIMPLE processor gives a start command. A transition from running

to idle occurs either when the SIMPLE processor gives a stop command or

spontaneously when the APL processor encounters a trap condition in the

program being executed, whichever happens first. These start and stop

commands are given in the following way: First, the SIMPLE processor sets

the low order (right-most) bit of APLCO:MWD: zero means stop; one means

start (the other bits of APLCO.MvlD have no significance). Then, the

processor sets FFSA. Some time later the APL processor will notice that

FFSA is set, will reset it, and will obey the command indicated by the

current setting of APLCOMWD.

Whenever the APL machine goes id.le, it issues a status code. These

codes are issued with a method like that used for giving start/stop commands.

The APL processor stores the status code in APLSTATWD and sets FFAS.

Eventually the SIMPLE processor will notice that FFAS is set, reset it,

and then look at the current value of APLSTATWD. Here are the code values:

1 = "whoops" ("start" comm.and received while running; APL processor stopped)

2 = "ok, stopped"

3 = "trap" (APL processor encountered a trap condition in program being run)

Some notes on this interface to the APL processor are in order. First

of all, when !;he processor is running and is given a stop command, it could

take as long as a few milliseconds before the shutdown occurs and the "ok,

stopped" status is issued. (Sometimes the APL processor really gets wrapped

up in its work!) Second, the SIMPLE processor should be sure the APL

29

processor is idle before it writes into the segment descriptors APLDSEGWD,

APLPSEG¢WD, and APLPSEGlWD. This is because the APL processor looks at

these cells from time to time as long as it is running.

6. The Instructions

This section details the execution of each A.PL processor instruction,

including operands, results, and possible traps. We begin with some

general information.

6.1. Operands, Results~ and Reference Counts

30

Instructions remove their operands from the top of the stack and replace

them with their results. If an instruction takes more than one operand,

then the first operand is in the stack cell addressed by LTOP, the second

aper.and is addressed by (LTOP-1), etc.

As was mentioned in section 2.4, every array block has a reference

count field giving the number of array descriptors currently pointing to

that array. This field is automatically incremented o.nd decremented by the

various instructions as they create and destroy array descript0rs. For

example the SHAPE instruction, which takes a single operand, decrements the

reference count of its operand (providing the operand is an array) before

replacing the operand by the result on the stack. Whenever a reference

count becomes zero, the space occupied by that array is automatically

returned to the fyee chain in array plock storage.

6.2. Traps

A trap results when the processor encounters some abnormal condition

during the execution of a program. Here is a conceptual view of trap gen

eration. Just oefore it executes each instruction, the processor consults

an infallible oracle to find out whether execution would fail for any

raason. If not, the prccessor executes the instruction (successfully, of

course), and proceeds to the next instruction. Otherwise, the processor

stops before executing the instruction. The processor sets the state

31

variables TRAPCLASS and TRAPNUMBER to a code describing what caused the

trap, but leaves the rest of the program state untouched. (Thus PCTR

points to the instruction which cannot be executed, and that instruction's

operands are still on top of the stack.) Finally, the processor issues a

"trap" status to the SIMPLE processor and enters its idle state, as described

in section 5.

After each instruction in the following descriptions is a list of traps

which could result; Appendix 2 summarizes all the traps by class and number.

Note that traps of class 3 (a trap denoted (n,m) means the trap of class n

and number m) are all due to a system error (compiler and/or processor), and

are not normally expected to occur!

A few traps are not explicitly listed under the individual instruction:..::

since they apply to virtually any instruction. These are the (3,1), (3,2),

and (3,3) traps, signifying the processor encountered a bad (too large)

address supposedly pointing into the procedure segment, the runtime stack,

and the rest of the data segment, respectively. The other special trap is

the step (2,1) trap, which is intended as a debugging aid. It occurs when

the processor is in step trace mode (i.e., the state flag STEP is e~ual to

one) and completes the execution of an instruction. In this case it is the

next instruction which is considered to have generated the trap (so, for

instance, the PCTR points to this next instruction).

6.3. The Individual Instructions

Following are the actual descriptions of the instructions. (Appendix l

lists.all the instructions in alphabetical order.)

32

l 1 6

SHORT-LOCAL c_a
1 1 1. 1 1'Z.

LOt-ti-\.Oc.AL l~t lo\ol Lt

l 11 1 12

LONG_<&l.C)aAL, fo\tlohf G

Ls o.V\d Lp art ~ a.ddr~s: ~Q.·h11e \~t~ers i~ -two1$ ~pk~\\4
~o+~tt6~ <iMd +rv.V\ee..te.d -b six o.Kd Mi.le b~-b1 ~~rec,+iwly. T~IA6 -,4, Ls~ -1
a.~ - 40~'1 ~ L.o ,-1 ore ~ist\ecL

G i~ a. j.fo~~ 11ddres: o. .\we.Ive-bit u.ri~ij~ \~-k~er-, w~k~ ~\¢1,.\J
be 4Ar~e r . ¼o.i., .5eve'\.

The FE ,CH fo.-~ o/

F,j \A.r~ 6.1

33

The FETCH FAMILY

(SHORT_LOCAL, LONG_LOCAL, and LONG_GLOBAL)

Execution of a FETCH instruction pushes a copy of the descriptor which

is the value of a designated variable onto th~ runtime stack. The first

two forms, SHORT_LOCAL and LONG_LOCAL, always designate a local variable

(or formal parameter variable) of the current function activation; a

LONG_GLOBAL instruction always refers to a global variable. A local variable

is addressed by a negative integer, which the processor interprets relative

to the value of the state variable LEASE. As shown in Figure 6.1, this

negative integer, in two's complement representation and truncated to

six or twelve bits, is explicitly contained in the instruction, SHORT_LOCAL

or LONG_LOCAL, respectively. A global variable is addressed by an integer

larger than seven, which the processor interprets relative to the start of

the data segment. (Addresses zero through seven are invalid since they

correspond to the words of the processor state area.) Each LONG GLOBAL

instruction has a twelve-bit field holding the address of the variable to

be affected.

As an aid in implementing call-by-reference function arguments, one

level of indirect addressing is possible. If the variable addressed by any

FETCH instruction contains an indirect parameter word descriptor (see

Section 2.5), then the instruction loads the value of the variable indirectly

addressed by this descriptor. Indirect par8.mcter word descriptors are

produced by the REFERENCE instruction (q.v.).

Traps:

(3,6)--Illegal indirect chain if an indirectly addressed variable con

tains another indirect parameter word descriptor.

34

(10,0)--Value error if the variable directly or indirectly addressed by

a FETCH instruction contains a descriptor for the "undefined value."

(1,1)--Runtime stack overflow if SBASE+LTOP = address of last cell in

data segment.

1 1 1 ~

(ohltl s

AS'S~N_INDE.X.£0, ro.rtk S,
ASSl~N
ASSlGN-NO~ULi
R~fERE.NCE:
1E51_ UEftNED

l 1 "
ffilo 1~ Ls

1.\.11

10!1 (olo I

1 t 1 1

[ol1lol1J

i{ 1~5~15
if 5=16
i{ S: 1 t
;{ S=-1&
;f S= 19

. T~ MEMREF F<lW\i\y

~i~W'~ 6.2

35

l
12.

LI. I
1 z.
G

36

The MEMREF Family

These instructions share a colill!lon format; the execution of each involves

a variable designated by a field of the instruction itself. As shown in

Figure 6.2, a MEMREF-family instruction is two or three bytes long. The

first byte contains the opcode for the MEMEEF family together with a

subopcode selecting a member of the family. The last byte or pair of bytes

addresses the variable to be affected; this address takes a form identical

to the SHORT_LOCAL, LONG_LOCAL, or LONG_GLOBAL instruction which would be

used to load the value of the same variable onto the stack.

One level of indirect addressing is provided by the MEMREF instructions,

just as with the FETCH instructions. If the variable directly addressed by

a MEMREF instruction contains an indirect parameter word descriptor, then

the instruction (ASSIGN, etc.) applies to the variable indirectly addressed

by this descriptor.

Traps from MEMREF instructions lsee also descriptions of the individual

instuctions):

(3,7)--Malformed address field.

(3,6)--Illegal indirect chain if an indirectly addressed variable

contains another indirect parameter word descriptor.

(3,8)--Undefined suboperation code.

ASSIGN INDEXED

The first sixteen of the thirty-two possible MEMREF suboperation codes

all stand for the ASSIGN_INDEXED operation, which is compiled for the APL

assignment operator when the variable on the left-hand side is subscripted.

Let RANK be the value of the suboperation code of the instruction,

1 ~RANK$ 15. Then the instruction takes (RANK+l) operands. The first

37

RANK operands are the subscripts, which are limited to scalars. The last

operand is the value computed by the code compiled from the right-hand side

of the assignment, and must also be scalar. The variable addressed by the

ASSIGN INDEXED instruction must hold a descriptor for an array of rank

RANK. If s.
1

is the value of the .th
1 subscript operand and L.

1
is the

length of the i th coordinate of this array, then O ~ (S.-IORG) < L.
J. J.

must hold for 1 ~ i ~ RANK. The execution of this instruction substitutes

the value of its last operand for the element in the array indexed by

RANK1·--l1 I (Si-IORG) • ~ L. J
j=i+l J

ASSIGN INDEXED returns on the stack the value of its last operand,

Traps:

(3,4)--Missing operand(s) if LTOP<(LBASE+RANK+2),

(3,5)--Unknown descriptor type if the value of the addressed variable

or of any of the operands is not a scalar or an array.

(5,0)--Rank error if the value of the addressed variable is a scalar,

or if any of the operands is an array.

(9,1)--Wrong number of subscripts if RANKf rank of the array which is

the value of the addressed variable.

(7,0)--Type error if any of the subscripts (first RANK operands) is a

character.

(8,5)--Domain error if any of the subscripts is a nonintegral floating

point number.

(9,2)--Index error if O~(S.-IORG)<L. fails to hold for some i,
1 1

1 ~ i ~ RANK.

38

ASSIGN, ASSIGN_NORESULT

These two instructions perform assignment to an unsubscripted variable.

Each takes a single operand from the stack, the value to be assigned.

Execution of an assignment stores this value into the variable directly or

indirectly addressed by the instruction (see The MEMREF Family). ASSIGN

also returns on top of the stack the value assigned to the variable.

ASSIGN_NORESULT, as its name implies, returns no value. It is e~uivalent

to an ASSIGN instruction followed by an EATl instruction, and could be

compiled for an assignment which is not nested in a larger expression.

• Traps:

(3,4)--Missing operand if LTOP<(LBASE+2) .•

REFERENCE

This instruction returns on the stack an indirect parameter word

descriptor for the variable it directly or indirectly addresses. It is

compiled for a variable reference used as an actual parameter to a

user-defined function specifying call-by-reference for the corresponding

formal parameter. The indirect parameter word descriptor (see Section 2.5)

contains one bit to designate a local or global variable, and a sixteen-bit

address field. This address is just a data segment address for a global

variable, and is an SBASE-relative address for a local variable. REFERENCE

takes no operands from the stack.

Traps:

(3,1)--Runtime stack overflow if (SBASE+LTOP) = address of last word

in data segment.

39

TEST DEFINED

This instruction returns an integer-type value of zero or one depending

on whether the variable it directly or indirectly addresses contains or

does not contain a descriptor for the "undefined value."

takes no operands from the stack.

Traps:

TEST DEFINED

(3,1)--Runtime stack overflow if (SBASE+LTOP) = address of last word

in data segment.

40

$ \5 o. sJ>ope.r~1io~ co<!e.:

S o~ra..~c,r•

0 IDENTITY
1 NEGATIVE.
2 FLOOR
3 CEILING
4 MPGNITVOE
S NOT
6 TI:$1_NUM8tR *
1 CCNVERT *
% SUM
q OlFF'E.R~NCf.
10 P~0\JC.T

dyoaic. 11 QUOT\ENT
12 LO~\CAL-?RODOC.T
13 LCGttCAL-SUM
1+ LESS
15 ~V~L*

41

The GENSC.ALAR Fa.mily

The instructions of this family (see Figure 6.3) correspond to (a subset

of) the APL "primitive scalar functions." Some are monadic, and the rest

are dyadic. Operands of any rank are allowed; the APL\360 rules of

conformity are exactly followed. Since operands of rank greater than zero

are treated elementwise, the descriptions of the individual GENSCALAR

instructions'are in terms of scalar operands.

Normally the APL processor opeys stop comnands from the SIMPLE

processor only between instruction executions (see Section 5). The only

exceptions are the GENSCALAR instructions, some of which spend as long as

15 microseconds per element of the result (which could have thousands of

elements). If a command from the SIMPLE processor arrives during the

execution of a GENSCALAR instruction, the APL processor sets the INTRPT

state flag to one and stores some internal quantities in the state variables

saved-NELTS, ... , and saved-RPTR (see Figure 3.2). Then the processor stops

just as it would between instructions. If the interrupted program is to be

restarted later, then the "saved-XX" state variables must be preserved

unmodified, as must the state flag INTRPT and the state flags marked as

temporaries in Figure 3.3.

Traps from GENSCALAR instructions (also see descriptions of individual

instructions) :

(3,4)--Missing operands if LTOP<LBASE~3 for dyadic operators, or if

LTOP<LBASE+2 for monadic operators

(3,5)--Unknown descriptor type if either operand is not a scalar or

an array.

--- ~ ---- -------

(5,0)--Rank error if the ranks of the operands for a dyadic operator

differ and neither operand is a one-element array.

42

(6,0)--Length error if the ranks of the operands for a dyadic operator

are the same, but the operand shapes are different and neither is a

one-element array.

(1,2)--Array block storage overflow if there is insufficient free spa~e

to create the result array.

IDENTITY

This monadic instruction returns its (integral or floating-point)

numeric operand unchanged.

Traps:

(7,0)--Type error if the operand is of character type.

NEGATIVE

This monadic instruction returns the same value as its numeric operand,

except with the opposite sign.

Traps:

(7,0)--Type error if the operand is of character type.

FLOOR

This monadic instruction returns the greatest integer not larger than

its numeric operand. The result is of integer type unless the operand is a

floating-point number greater than or equal to 223 in magnitude, in which

case only a floating-point representation is possible.

43

Traps:

(7,0)--Type error if the operand is of character type.

CEILING

This monadic instruction returns the least' integer not smaller than i-+,s

numeric operand. The result is of integer type unless the operand is a

floating-point number greater than or equal to 223 in magnitude, in which

case only a floating-point representation is possible.

Traps:

(7,0)--Type error if the operand is of character type.

MAGNITUDE

This monadic instruction returns the same value as its numeric operand,

except with positive sign.

Traps:

(7;0)--Type error if the operand is of character type.

NOT

The single operand for this instruction must be logical, i.e., equal

to zero or one (either integer or floating-point). The result is equal to

one minus the operand, and is always of integer type.

Traps:

(7,0)--Type error if the operand is of character type.

(8,5)--Domain error if the operand is a number other than zero or one.

TEST NUMBER

This monadic operator takes any scalar for an operand. The result,

----- - -------- -- ~---------~

always of integer type, is one for a numeric (integer or floating-point)

operand and zero for a character operand.

Traps: none.

CONVERT

This monadic operator takes both character and numeric operands.

When given a character, it returns the corresponding character code as an

integer-type value. If given an integral number between zero and 255

inciusive (in either· integer or floating-point representation), CONVERT

returns the character-type value possessing that code.

Traps:

(8,5)--Domain error if the operand is a number which is nonintegral,

negative, or greater than 255.

SUM, DIFFERENCE, PRODUCT

44

These dyadic instructions return, respectively, the sum, difference, or

product of two numeric operands. The result is of integer type if both

operands are of integer type, or if the result is zero. In every other

case the result is of floating-point type.

Traps:

(7,0)--Type error if either of the operands is of character type.

(8,1)--Integer overflow if both operands are of integer type and the

magnitude of r,he result is not less than 223 •

(8,2)--Floating-point underflow if at least one operand is floating

point and the magnitude of the result is less than 2- 128 (but is greater

than zero).

(8,3)--Floating-point overflow if at least one operand is floating

point and the magnitude of the result is not less than 2 128 •

QUOTIENT

This dyadic instruction returns the quotient of its first operand

divided by its second operand, both of which must be numeric. The result is

always of float:i.ng-point type.

Traps:

(7,0)--Type error if either operand is of character type.

(8,2)--Floating-point exponent underflow if the magnitude of the result

is less than 2- 128 {but is greater than zero).

(8,3)--Floating-point exponent overflow if the magnitude of the result

is not less than 2 128 •

(8,4)--Zero divisor if the second operand is zero.

LOGICAL_PRODUCT, LOGICAL_SUM

These dyadic instructions return, respectively, the logical conjunction

and disjunction of their operands, as shown in the truth table below. Each

operand must be either zero or one (integer or floating point); the result

will always be of integer type.

A B AL PRODUCT B AL SUM B

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

46

Traps:

{7,0)--Type error if either operand is of character type.

(8,5)--Domain error if either operand is a number other than zero or one.

LESS

This dyadic instruction returns one if its first operand is smaller

than its second operand, and returns zero otherwise; the result is always of

integer type. Execution of the LESS instruction involves finding the

difference of its operands, hence the same traps as listed under DIFFERENCE

are possible.

Traps: same as DIFFERENCE.

EQUAL

This dyadic instruction returns one if its operands are equal, and zero

otherwise. The result is always of integer type, but the operands may be

any scalars (character, integer, or floating point). The definition of

equality used is as follows. A character scalar is equal only to another

character scalar possessing the same character code. Two numbers are equal

if their difference (as would be returned by the DIFFERENCE instruction) is

zero.

Traps:

(8,1)--Integer overflow if both operands are of integer type and the

magnitude of -:.heir difference is not less than 2 2 3 •

(8,2)--Floating-point underflow if both operands are of numeric type

and at least one operand is floating-point and the magnitude of their

difference is less than 2- 128 (but is greater than zero).

(8,3)--Floating-point overflow if both operands are of numeric type

and at least one operand is floating-point and the magnitude of their

difference is not less than 2 128 •

47

l 1 i 1 'I

I 1\0101 l I RANK]

Th-e INDEX lriJrv.cha~

1 1. 1 1. 12

hlol1\sl M

5 i\ 1~e ~i1v. (l ~ ~Q'tiiJe, c~ l'\ol\~~Ji1t).

M i~ -t~ ~f\i.4wk, 0)\ Wl\~''"'•d i~-\e,~r.

48

INDEX

This instruction corresponds to the indexing operation of APL\360

restricted to scalar subscripts. The first operand is the array to be

indexed; its rank must be equal to the value of the RANK field of the INDEX

instruction itself (see Figure 6.4). The rest of the operands are the

integer or integral floating-point subscripts in left-to-right order. If

s.
].

is the .th
]. subscript and L.

].
is the length of the .th

]. coordinate

of the first operand, then Q:s;(S. -IORG) <L. must hold for 1:;;i:s;RANK.
].].

The

result returned by INDEX is the value of the ravel of its first operand

indexed by

RANK RANK
I _ I (si-IORG) • rr LJ. J

i=l j=i+l

Traps:

(3,4)--Missing operand(s) if LTOP<(LBASE+RANK+2).

(3,5)--Unknown descriptor tYJ?e if the first operand is not a scalar

or an array, or if any other operand is not a scalar or an array or the

"undefined value."

(5,0}--Rank error if the first operand is a scalar, or if any other

operand is an array or the "undefined value."

(9,1)--Wrong number of subscripts if RANKi rank of first operand.

(7,0)--TYJ;le error if any subscript is a character.

(8,5)--Domain error if one of the subscript operands is a nonintegral

floating-point number.

(9,2)--Index error if O~(S.-IORG)<L. fails to hold for some i,
].].

SHORT CONSTANT

This instruction takes no operands from the stack, and places one

int_eger-type result on the stack. The sign and magnitude of the result,

say Sand M, respectively, together constitut~ the 13 right-most bits of

the SHORT CONSTANT instruction itself (see Figure 6.5}.

Traps:

(1,1)--Runtime stack overflow if room for one more cell on the stack

does not exist.

50

s optro:for

0 UNDEFlNE0
1 f.Ail
2 1~1£RC.HANG(
3 SETORlG\tJ
4 GETOR.lGIN
5 SHAPE
6 RE.S~pt
1 RAVEL
8 C~T[NATE

No

q (NDEX-GENERATOR .
10 C.ONSTANT-5C.ALAR Ve,,, see Fig1Are b.t
11 CONSTANT-VECTOR '/e.,,, ste r:,,\l("~ ~-~

!! it::E N}. v~. s~ F-~.,. ,_q

15 GO-F'AL~ .. .
16 RE1URN No
11 CALL v~. ~ Rs"'r' ".to
ti N0-OPtRAllON } •
19 BREA\(PO\N T N6

20 ATTE.Nl\ ON

51

The EI'C Family

The instructions in this family (see list in Figure 6.6) are not

actually related, except that the first two bits of the opcode of all of

them are the sa.~e.

Traps (see also the descriptions of the individual instructions):

(3,11)--Undefined suboperation code in EI'C-class instruction.

UNDEFINED

This instruction takes no operands. Its sole effect is to place a

descriptor for the undefined value on top of the stack.

Traps:

52

(1,1)--Runtime stack overflow if room for one more cell on the stack

does not exist, i.e., if SBASE+LTOP = address of last word in data segment.

EATl

This instruction takes one operand, of any type, and produces no

result. It is useful at the end of a statement to remove the value of the

statement from the stack.

Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

INTERCHANGE

This instruction takes two operands, of any type, and returns two

results by simply interchanging its operands on the top of the stack. The

main use for INTERCHANGE is to reverse the operands to LESS to get the

effect of a "GREATER" instruction.

53

Traps:

(3,4)--Missing operand(s) if LTOP<LBASE+3.

SETORIGIN

This instruction takes one operand, produces one result, and has a side

effect. The operand must be either zero or one (either integer or floating

point); the state flag IORG (see section 3.1) is set accordingly. The result

of this instruction is the previous value of IORG, zero or one, and is

always of integer type. As a special case, the operand to SETORIGIN may be

a suitable one-element array.

Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

(3,5)--Unk.nown descriptor type if the operand is not a scalar or an array.

(6,0)--Length error if the operand is an array with other than one

element.

(7,0)--Type error if (the element of) the operand is a character.

(8,5)--Domain error if (the element of) the operand is a number not

equ.al to zero or or~e.

GETORIGIN

This instruction takes no operands; it returns as its single result

the current value of the IORG state flag, ?.ero or one. The result is always

of integer type.

Traps:

(1,1)--Runtime stack overflow if room for one more cell on the stack

is lacking.

SH.A.PE

This instruction corresponds exactly to the "monadic rho" operator of

APL\360. Its single operand may be any scalar or array. The result is

always an array of rank one whose length is equal to the rank of the oper

and; the integer type elements of this arr.ay are just the lengths of the

coordinates of the operand. For example, SHAPE returns the empty vector

when applied to any scalar.

Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

(3,5)--Unknown descriptor type if the operand is not a scalar or an

array.

(1,2)--Array block storage overflow if insufficient free space to cre

ate the result array exists.

RESHAPE

This instruction corresponds exactly to the "dyadic rho" operator of

APL\360. The first operand is a vector of non-negative integral numbers

(special case: a single such scalar); the result is an array with these

numbers as its shape, and elements taken from the ravel of the second oper

and.

Traps:

(3,4)--Missing operand if LTOP<LBASE+3.

55

(3,5)--Unknown descriptor type if eithe:r· operanci is other than a scalar

or an array.

(5,0)--Rank error if the first operand has rank larger than one.

(7,0)--Type error if (any element of) the first operand is a character.

(8,5)--Domain error if (any element of) the first operand is a number
16

which is nonintegral, negative, or not less than 2 , or if the product of
16

the elements of the first operand is not less than 2

(6,0)--Length error if the second operand is an empty array but the

shape for the result (as given by the first operand) is nonempty.

(1,2)--Array block storage overflow if insufficient free space exists

to allocate the result array.

RAVEL

This instruction corresponds exactly to the "monadic comma" operator

of APL\360. Its single operand may be scalar or array; the result is always

a vector (rank one array) having the same number of elements as the operand

has. The elements of the result are the same as the elements of the oper

and, taken in the standard APL ravel order.

Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

(3,5)--Unknown descriptor type if the operand is not a scalar or an

array.

(1,2)--Array block storage overflow if insufficient free space exists

to allocate the result array.

56

CATENATE

This instruction corresponds to the "dyadic comm.a" operator of APL

restricted to operands of rank zero or one. The result is always a vector

(rank one array} whose length is equal to the sum of the number of elements

in both operands. The elements of the result are just the elements of the

first operand followed by the elements of the second operand. Note that·the

elements of the operands for CATENATE may be any mixture of characters and

numbers.

Traps:

(3,4)--Missing operand(s) if LTOP<LBASE+3.

(3,5)--Unkno~m descriptor type if either operand is other than a scalar

or an array.

(5,0)--Rank error if either operar..d has rank greater than one.

(6,0)--Length error if the sum of the lengths of the operands is not
16

less than 2

(1,2)--Array block storage overflow if insufficient free space exists

for the result array.

INDEX GENERATOR

This instruction corresponds exactly to the "monadic iota" operator of

APL. Its operand should be a nonnegative integral number or one-element

array; the result is a rank one array whose length is equal to the value of

the operand. The elements of the result are consecutive integers beginning

with the current index origin (i.e., the value of the state flag IORG).

57

Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

(3,5)--Unk.nown descriptor type if the operand is not a scalar or an

array.

(6,0)--Length error if the operand is an array with length other than

one.

(7,0)--Ty:pe error if the operand (or its element if it is a one-element

array) is a character.

(8,5)--Doroain error if the operand (or its element) is a number which is
16

negative, nonintegral, or not less than 2

(1,2)--Array block storage overflow if sufficient free space is lacking.

58

1 1 C.

(1111 10 D
I

)

59

CONSTANT SCALAR

This instruction is five bytes long lsee Figure 6.7). The first byte

is the opcode artd the other four bytes (32 bi ts) constitute a descriptor

for some scalar (character, integer, or floating-point) to be returned on

top of the stack. (CONSTANT_SCALAR takes no operands from the stack.)

Traps:

(1,1)--Runtime stack overflow if (SBASE+LTOP)= address of last word

of data segment.

l_
.,.

""'Q
i -.... I

3

T

~ -er
3
0 ..a

-p
I --..:.
\

z ~o

-..,
0 ...

►
'\ ,,

+' ' ,,
NI I/ I

I I I. I
Ot I' I

I/ \ I
\a

•z

-

60

z
s ...,,

. !! -~
"' \i ~

~
L- ~ ...J!. ~

u, '-' ~ u, 0 g N~
00 VI ·5

~1 '-D z ~
~ ~ "'-v

0 a I- ~ z. u: +"d <C • i ~ J-
V)

u >- z
'1 ~ s
\I\ -~

~ ·-z a t-

61

CONSTANT VECTOR

This is the only instruction which .must be aligned with respect to the

word boundaries in the code of a function block. Its format is as follows

(see Figure 6.8):

(1) The ETC-class opcode for CONSTANT_VECTOR;

(2) A byte containing a nonnegative integer count (less than 256);

(3} Zero, one, two, or three bytes which are completely ignored to

fill out the current code word;

(4) "Count" 32-bit descriptors (of any scalar tY})e), one to a code

word.

The effect of this instruction is to return a vector (rank one array)

with those scalars as elements. (CONSTANT_VECTOR takes no operands from

the stack.)

Traps:

(1,2)--Array block storage overflow if insufficient contiguous free

space exists.

(1,1)--Runtime stack overflow if (SBASE+LTOP)= address of last word of

data segment.

BRANCH

This instruction exactly corresponds to the "monadic right arrow" opera

tor of APL\36O. The instruction returns no result value, but has a side

effect which depends on the value of its single operand:

(1) If the operand is a nonnegative integral number (integer or float

ing point) not greater than the value of the current function block header's

62

NLINES field, then PCTR in the current stack frame is set equal to the con

tents of the line table entry in the current function block indexed by the

value of the operand;

(2) If the operand is an integral number outside the range mentioned in

case (1) above, the processor returns from the current function just as if

it were executing a RETURN instruction (q.v.);

(3} If the operand is a nonempty vector the first element of which

satisfies case (1) or case (2) above, then the action specified for that

case is taken;

(4) Else if the operand is an empty vector, the processor takes no

special action.

The BRANCH operator does not return a value in the usual sense that a call

to it could be nested within an expression (but of course in case (2) above

the current function may return a value).

Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

(3,5)--Unknown descriptor type if the operand is not a scalar or an

array.

(5,0)--Rank error if the operand has rank greater than one.

(7,0)--Type error if the operand (or its first element if the operand

is a vector) is a character.

(8,5)--Domain error if the operand (or its first element) is not inl;,e

gral.

Also--in case (2) above, any trap listed under RETURN.

63

1 1 ~ Jf,

GO 11111 13 I A 1
~ 1 6 16

GO_TRUE l1\11 14 I A

1 1 6 16

GO-FALSE. lilil 15 I A

64

GO

This instruction does not correspond to any construct of' APL\360. It

has no operands or results, ·but sets the contents of the PCTR field in the

current stack frame equal to the byte address contained in the second two

bytes of the three-byte GO instruction (see Figure 6.9).

Traps:

(3,1)--Procedure segment address too large if the given byte address

lies past the end of the current procedure segment.

GO _TRUE,; GO _FALSE

These three-byte instructions each take a single operand, the value of

which should be a numeric zero or one (either integer or floating-point).

Execution of GO_TRUE or GO_FALSE is the same as for GO, except that setting

PCTR is conditioned upon the value of the operand being one or zero, respec

tively. As a special case these instructions accept a suitable one-element

array as operand; neither returns a result on the stack.

Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

(3,5)--Unknowp. descriptor type if the operand is not a scalar or an

array.

(6,0)--Length error if the operand is an array with other than one

element.

(7,0}--Type error if the operand (or its solitary element) is a character.

(8,5)--Domain error if the operand (or its element) is a number other

65

than zero or one.

(3,1)--Procedure segment address too large if PCTR is to be set but

the given byte address lies past the end of the current procedure segment.

RETURN

This instruction of no operands causes the processor to return from

the current function, just as would be caused by executing a BRANCH to a

nonexistent line number. The return is accomplished by resetting the

state variables LBASE and LTOP to the values which were in effect when the

current function was called, and additionally pushing a result value on the

stack if the RESULT flag in the header of the current function is one (see

Figure 4.2). The new value for LBASE is take"l from the "last LBASE" field

in the stack frame for the returning function activation (see Figure 3.4).

LTOP is set equal to the old value of LBASE minus the quantity

(NARGS+NLOCALS+l), where NARGS and NLOCALS are fields in the header of the

current function. The result value, if any, is taken from the first local

variable (the one with address -1) of the returning function.

Traps:

(2,3)--Return trace if both the global state flag FCNRTRC and the

RTNTRACE flag in the current function block's header are equal to one.

(3,12)--Attempt to return from bottom function activation in stack.if

value of "last LBASE" field in the current stack frame is not less than the

current value of LBASE.

(10,0)--Value error if the function is to return a result but its

result variable contains a descriptor for the "undefined value."

66

4 1 1J

H fCN<1 J
~

fu.l'lcliol\ J~c.rip+or

67

CALL

Execution of this instruction causes the processor to call a function,

i.e., to establish a new frame on top of the stack and make it the current

one, updating LBASE and LTOP. The three-byte CALL instruction takes a

variable number (controlled by the NARGS field of the CALL instruction) of

operands on the stack, the actual parameters to the function being called.

Rather than being removed by CALL, these operands become the formal para

meter variables for the new stack frame. The other local variables of

this frame are automatically initialized to the "undefined value". The

"function descriptor" field in the new frame is set equal to the field of

the same name in the CALL instruction itself (see Figure 6.10); the PCTR

field in the new frame is always set to 8, which is the byte address of the

first instruction in any function block. After the call is complete, the

state variable LTOP will be equal to (LB.ASE+l).

A function is in call trace mode if both the global state flag FCNRTRC

and the CALLTRACE flag in the header of the function are equal to one. Exe- -

cution of the first instruction after the call to a function in call trace

mode always causes a call trace or (2,2) trap.

Traps:

(3,4)--Missing operand(s) if (LBASE+NARGS+l)>LTOP, where NARGS is a

field of the CALL instruction.

(1,1)--Runtime stack overflow if (SBASE+LTOP+NLOCALS+2)> the last ad

dress in the data segment (NLOCALS is a field'in the header of the called

function block) .

68

NO OPERATION

This instruction takes no operands, returns no results, and has no

side effects. It could be used, for example, to patch over an instruction

used for debugging that is no longer needed.

Traps: None.

BREAKPOINT

This instruction takes no operands, returns no results, and in fact never

finishes execution; its sole effect is to cause a "break.point encountered"

(2,4) trap. Note that the PCTR field (in the current stack frame) is left

pointing to the BREAKPOINT instruction; to enable the program to continue

past the break.point, the PCTR must be increased by one (the length of this

instruction) before the program is restarted.

Traps:

(2,4)--Break.point trap (unconditional).

ATTENTION

This instruction is similar to BREAKPOINT {q.v.): it takes no operands,

returns no result, and always generates a trap. In this case the trap is an

"attention" (4,0) trap, and is intended as part of an escape mechanism so

that APL programs can call functions running on the SIMPLE processor.

Traps:

(4,o)--Attention trap (unconditional).

Instruction

ASSIGN

ASSIGN INDEXED.

ASSIGN NORESULT

ATTENTION

BRANCH ...

BREAKPOINT.

CALL ..

CATENATE.

CEILING

CONSTANT SCALAR

CONSTANT VECTOR - .
CONVERT

DIFFERENCE . .

EATl ..

EQUAL

FLOOR

GETORIGIN . .
GO . . .
GO FALSE . . .
GO TRUE

IDENTITY .
INDEX
INDEX GENERATOR

.

.

.

.
. .

.
. .

.

APPENDIX I

INDEX TO Tiill INGTTIUCTIOim.

Page Number

. . . 38

36

. 38

. 68
.. 6l

. 68
67

. 56

43

Instruction

INTERCHANGE

LESS

LOGICAL_PRODUCT

LOGICAL SUM

LONG GLOBAL

LONG_LOCAL

MAGNITUDE

NEGATIVE.

• • • • • 59

NO OPERATION.

NOT

.

.

. . . . 61

44
. 44

. . 52

. . 46
. . . . 42

. . . . 53

. . 64
. . 64

. . . . 64
. 42
. 49

. . . . 56

PRODUCT

QUOTIENT.

RAVEL

REFERENCE

REl;>HAPE

RETURN •.

SETORIGIN

SHAPE

SHORT_CONSTANT.

SHORT_LOCAL

SUM

TEST DEFINED

TEST_NUMBER

UNDEFINED

Page Number

. 52

. 46
. . 45

. 45

. . . . 33

. . . 33

. . . 43

. . . 42

. . . 68
. 43

. 44

. 45
• 55

. . . 38

. . . . 54

. 65

53

. 54
. . 50

. 33

. 44
39

. 43

. 52

Class Number

1

1

2

2

1

2

3

4

3

1

2

3

4

5

6

7
8

9

10

11

12

4

5

6

7
8

1

2

3

4

5

9

1

2

10

APPENDIX II

SUMMARY OF TRAP CLASSES AND NUMBERS

Description

Storage overflow:

Runtime stack overflow

Array block storage overflow

Debug trap:

Instruction completed in step mode

Function call in call-trace mode

Function return in return-trace mode

Breakpoint encountered

System error (processor and/or compiler):

Procedure segment address too large

Stack address too large

Global variable or array block address too large

Missing operand(s) for instruction

Unknown descriptor type for instruction operand

Double indirection encountered

Malformed MEMREF-fa.mily instruction

Undefined MEMREF suboperation

Undefined GENSCALAR suboperation

70

Processor state OPNO field too large on interrupt restart

Undefined ETC suboperation

Attempt to return from bottom function activation in stack

Attention trap

APL rank error

APL length error

Type error--character operand(s) where numeric expected

Domain error:

Integer overflow

Floating-point exponen·:; underflow

Floating-point exponent overflow

Division by zero

Other domain error

Index error:

Wrong number of subscripts

Subscript too large or small (APL index error)

APL value error

APPENDIX III

ARRAY BLOCK STORAGE ALLOCATION ALGORITHMS

FUNCTION MAKE(SCALAR N)

*
* THIS FUNCTION REI'URNS THE ADDRESS OF A NEW RESERVED BLOCK WITH SIZE=N.

*
SCALAR P

P + ROVER

WHILE P.SIZE<N DO

P + P.NEXT

GOTO GLOBALOVERFLOW IF P=ROVER

ENDWHILE

(P+P.SIZE).PREVFREE + FALSE

ROVER+ P.NEXT

IF P.SIZE-N:SMAXSLOP THEN

P.LAST.NEXT + P.NEXT

P.NEXT.LAST + P.LAST

P.SLOP + P.SIZE-N

P.SIZE + N

ELSE

P.THISFREE + FALSE

P.PREVFREE + FALSE

P.SIZE + P.SIZE-N

(P+P.SIZE-1).SIZE + P.SIZE

P + P+P.SIZE

P.SLOP + 0

P.SIZE + N

P.THISFREE + FALSE

P.PREVFREE + TRUE

ENDIF
RETURN p

ENDFUNCTION

71

FUNCTION FREE(SCALAR P)

*
* FREE THE BLOCK POINTED TO BY P.

*
SCALAR Q

P.SIZE + ?,SIZE+P,SLOP

Q + P+P.SIZE

IF P.PREVFREE=FALSE THEN

IF Q.THISFREE=fALSE THEN

Q.PREVFREE + TRUE

P.NEXT + ROVER.NEXT

P.LAST + ROVER

P.LAST.NEXT + P

P.NEXT.LAST + P

ELSE

P.pIZE + P.SIZE+Q.SIZE

P.NEXT + Q.NEXT

P.LAST + Q.LAST

P.NEXT.LAST + P

P.LAST.NEXT + P

ROVER+ P

ENDIF

P.THISFREE + TRUE

ELSE

IF Q.THISFREE=FALSE THEN

Q.PREVFREE + TRUE

ELSE

P.SIZE + P.SIZE+Q.SIZE

Q.LAST.NEXT + Q.NEXT

Q,NEXT.LAST + Q,LAST

ENDIF

P + P-(P-1).SIZE

P.SIZE + P,SIZE+(P+P,SIZE),SIZE

ROVER+ P

ENDIF

(P+P,SIZE-1),SIZE + P.SIZE

RETURN

ENDFUNCTION

72

	19730202-prm-crms_apl_processor_ref-002
	19730202-prm-crms_apl_processor_ref-003

