CRMS APL PROCESSOR

REFERENCE MANUAL

Paul Mcdones

February 2, 1973

Systems Group
Technical Document
Center For Research in Management Science
University of California

Berkeley

This work was done as part of the Systems Development effort under
National Science Foundation Grant GS-32138.

TABLE OF CONTENTS

l. Introduction

2. APL Objects

2.1 Floating-Point Numbers

2.2 Integers . . . « ¢ v ¢« ¢ v « . .

2.3. Characters .

2.4, Arrays e ..

2.5. Indirect Parameter Words e e e .

2.6. The "Undefined Value"
3. The Data Segment ¢ v « o« . .

3.1. Processor State Area e e e

3.2. Global Variables . . . ¢« « « . .

3.3. Runtime Stack

3.4. Array Block Storage

4. The Procedure Segment

4.1. Function Blocks and the Function Directory .

4.2, Components of a Function Block .

4.2.1. Function Block Header
4.2.2. Code + « « « « o « o o« .
4.2.3. Line Table

5. Controlling the APL Processor . . .

6. The Instructions

6.1. Operands, Results, and Reference
6.2. Traps =« « + o« e e e e e
6.3. The Individual Instructlons

The FETCH Family . ..

The MEMREF Family . « « « &

The GENSCALAR Famlly .

INDEX

SHORT _¢ CONSTANT e e e e e e
The ETC Family

Appendix 1: Index to the APL Instructions

.

Counts

Appendix 2: Summary of Trap Classes and Numbers

Appendix 3: Array Block Storage Allocation Algorithms

1. Introduction

One of the major goals of the new CRMS computér systém is to provide
efficient, time-shared APL. 'The systém contains two procéssbrs with common
main (core) and auxiliary (disk) memories, as well as controllers for a
variety of peripheral devices. One processor (the primary subject of this
document) is specially tailored for the execution of APL programs. The
other processor is optimized for executing programs in the SIMPLE programming
language and is described elsewhere.

Rather than directly interpreting source language character strings,
the APL processor executes an internal "machine language" form adapted for
that purpose. Three types of changes are involved in the mapping from

external to internal APL:

(1) (literal notation => TDinary notation) Each numeric or
character literal is replaced by a binary encoding of the

number or character.

(2) (identifier => variable address) An arbitrary
correspondence between the identifiers of a program and
unique consecutive integers is formed; then all occurrences

of an identifier are replaced by its number (address).

(3) (infix => postfix) The expressions are reordered so
that an operator follows its operands instead of preceding

(monadic) or separating (dyadic) them.

These changes are made for technological rather than logical reasons.
Arithmetic can be performed much faster on operands in binary notation than

in decimal notation. Similarly, binding identifiers to addresses in advance

saves time for the processor, and the resultant addresses are in general
more compact than the identifiers they replacé.

Programs exist for the SIMPLE procéssor which translate external to
internal APL and perform the concomitant editing, debugging, and "system"
functions. Thus the sole responsibility of the APL processor is to execute
internal APL programs, and, indeed, this processor is capable of nothing
else. Since the two processors share core memory, programs and data
prepared by the SIMPLE processor are directly accessible by the APL processor.

This manual assumes familiarity with APL\360; for example, see APL\360

" Reference Manual by Sandra Pakin (Science Research Associates, 1972).

2. APL Objects

APL, is a language for expressing algorithms which manipulate numbers,
characters, and n-dimensional arrays. In this‘séction we will describe how
these objects ar~ revresented internal to thé APL procéssor. |

Every value occupies a single 32-bit word. Because of the dynamic
nature of APL, stemming from its lack of compile-time type declarations,
each value must carry explicit type information at run-time. Thus type bits
and value are packed together into a 32-bit word or descriptor. 1In Figure
2.1 are illustrated the formats of the various types of values; some

further explanation is in order.

2.1, Floating-Point Numbers

A floating-point number consists of a signed, fixed-point coefficient
(with the radix point lying between the first and second significant bits)
and an "exponent" or power-of-two scale factor. If F is a floating-point
number whose sign, fraction, and exponent are, respectively, s , £ and e

(all taken as unsigned integers), then

£y, 2(e—128)
222

F=(1-2s) . (1+ .
As can be seen from Figure 2.1, all floating-point numbers are "normalized,"

that is, if c¢ = (1 + —2;) is the coefficient of a floating point number
2

F,then 1 <c <2- 222 | Equivalently, the "leading" bit of F (the
first bit after the sign of F) is a one. The bit patterns corresponding
to unnormalized numbers are thus available to encode other types of values;
Figure 2.1 shows how the type field of a value not a floating-point number

is used.

oy
11 22 2
S|l £ * e -ﬂm{'mj-poih“
nuwmeric
1 23
s|oftfofofoTofofo tagnitude integer L scaler
; H
‘]
.] 16 8)
[ofofo[1]e]o]o]o 0 code character y
! :
! :
L g 16
blofojo{tio]ole 0 address array
A
! H 3 1 16
ofojolojo(1jolo 0 address indirect parameter word
' 5 |
t 1 24
olalolo]oloj1) 0 | “undefined value”
st A5 —!

¥ The coefficient ¢f a 'qw‘ma pom’t huwber consish of o !edunj “1" bit followed by -
‘H\e 'F (‘ﬁa&:cv.) ﬂeH : . S , _

APL Desciptor Formats,

.Figur?l el |

2.2. Integers

An alternative representation for integers of magnitudé léss than 223
is available. In particular, zero must bé représented in this format since
it is not a normalizable floating-point number. A point concérning zero is
that it is always represented with the sign bit s = 0 ; "minus zero" is not

allowed.

2.3. Characters

A scalar character is represented by an 8-bit code chosen from an
extended-ASCII character set which includes the special characters necessary

for APL.

2.4, Arrays

A descriptor for a scalar (numeric or character) might be termed an
"immediate descriptor" since it completely specifies the identity of its
value. In contrast, an array descriptor merely points to an array block
stored elsewhere which contains the elements and shape information of the
array. This scheme has two benefits:

(1) All descriptors are a uniform one word in size;

(2) sSeveral distinct array descriptors may point to the same

| array block.
The form of an array block is given in Figure 2.2. Following is a description
of the various fields.

The rank of an array is the number of dimensions it has; the numbers

in the array block are called the shape

length1 . length2 seases lengthrank

of the array and must be regular integer-type descriptors for nonnegative

nunbers. If the value of lengthi of an array equals n , then there are n

12 Tosiary 13

8 8 16 &
Ramk
HEADEE { Referece Count fhuomber of elemeds=Nelts -
B ferqthy 1
fengths
SHAPE % : ke
| T
- ?eM‘H\E«k %
efewent;
elements
RaveL 4| : o el
L__ M‘t_t\’ngﬂg j

. Z = allocdlor field

APL Array format

Fiqure ¢..

elements along the ith coordinate of the array; the total number of

elements in the array is

rank
I lengthi .
i=

Nelts

1l are both possible.

The cases DNelts = 0 and Nelts
The elements of the array may be any scalar descriptors, and are stored

in a linear sequence known in APL as the ravel of the array. Since it is

possible for several‘array descriptors to point to the same array block, a

reference count is used to determine when the storage for an array block may

be released. This count is a field in fhe array block giving the number of
array descriptors currently pointing to this array block; it is updated
whenever such a descriptor is created or destroyed. If a reference count is
reduced to zero, then the storage occupied by that array block is returned

to a free pool.

2.5. Indirect Parameter Words

These descriptors are not for ordinary values, but are used in
conjunction with call-by-reference parameters to functions. ZEach contains
the identity of a local or global variable, and itself resides in a call-by-
reference formal parameter variable of some function; references by load and
store instructions directed at the formal variable instead affect the
variable identified by the indirect parameter word. The variable to be
affected is icentified by one bit (labeled "seg" in Figure 2.1) signifying
local or global (0 => local, 1 => global) and sixteen bits specifying an
address. For a local variable, this address is relative to the state
variable SBASE (see Section 3.3); for a global variable this is just the

ordinary address of that variable in the data segment.

2.6. The "Undefined Value"

This descriptor (which is defined!) is uséd to initialize global and
local variables so that references to variablés which havén't been explicitly
assigned a value will cause a value error trap. The processor automatically
initializes local variables with a descriptor for the "undefined value";
such initialization for the global variables must be done in software on

the SIMPLE processor before starting the APL program.

3. The Data Segment

A program for the APL processor consists of a pair of procedure
segments together with a data segmént. Thé procedure segments (described
in Section 4) ccntain reentrant code, and éxpréss the invariant algorithm
of the program. The data segment, on the othér hand, contains all the
storage used to run the program: that eccupied by the variables of the
program as well as that used by the processor for its internal data
structures.

Figure 3.1 shows the overall layout of the data segment. (Higher
addresses are toward the bottom of the figure, as is the case throughout
this document.) The region labeled "global storage" holds information
accessible throughout the execution of the program, and is statically
allocated before execution begins. Local storage consists of information
for each of a sequence of function activations. It is allocated using a
last-in-first-out discipline dictated by the nested activations of functions
resulting from the flow of control through the program. Finally, array
block storage contains arrays each of which is referenced by one or more

variables or temporary cells. Space in this area is dynamically allocated.

3.1. Processor State Area

An assortment of state variables used by the processor isg gathered
together at the beginping of the data segment (see Figure 3.2). The
individual state variables will be described in the sequel: SBASE, LTOP,
and LBASE in Section 3.3 (Runtime Stack); TRAPCLASS and TRAPNUMBER in
Section 6.2 (Traps); saved-NELTS, -OPNO, -APTR, -BPTR, and -RPTR in

Section 6.3 (under The GENSCALAR Family); and ROVER and BLOCKPTR in

1] Ia.v.u\a.ry 13

Glaba] :,Jm.ug{,{

w 6+0T43€. 4

~

e

ffocessor 51'5}? aga

3[0541 varables

ascay black s{bruje

APL Dda %mﬁt
F:ujul‘e 31

10

11 Tamary 13

16

16

SBASE LTOP

FLAGS LBASE
TRAPCLASS TRAPNUMBER
saved-NELTS saved-GOPNO
saveAPTR sawed-BPTR
saved-RPTR

RQVER
BLOCKPTR

APL Preresor Stade Aa

F l‘juu'c 3.2

11

1 '&v«mqry 13

12
ii
ISR e
s K N t v ') I
SRS SL RIS T MED
BiBIgIMINIAIAIRIT clir|L|€
1s1i§2g:g:k:f§§ R TIT gé‘
] N 1) . '
P R a1k
- L i 5 A] J_JL J c
- wuse
fﬁm‘:oranes lnckx oﬁj'm, =& o :1
sep made if 1
function returntrace mede if 1

\ fundtion call drace mode if 1

L proassser inferrupled Juﬁv\j artdy operction if 1

¥ |f the prcescor is slopped with FLAGSSINTRPT=1, the thece
temperary bids must not Leckmjecl.

APL Foceen Sule FLAGS
Ficlure. 3.3

13

Section 3.4 (Array Block Storage). This leaves FLAGS, which is really a
collection of one-bit variables, as shown in Figuré 3.3. IORG is the APL
index origin (see Section 6.3, various instructions). FCNCTRC and FCNRTRC
control function call and réturn tracing (sée Séction 6.3, CALL and RETURN).
STEP controls step tracing, another debugging tool (see Section 6.2, step
trap). INTRPT and the "temporary" flag bits are discussed in Section 6.3

under The GENSCALAR Family.

3.2. Global Variables

Each global variable in the program is allocated a single cell in a
special area of the data segment. This cell contains a descriptor for the
value of the variable, be it scalar, array, or "undefined." Global
variables are addressed by integers larger than seven. The addresses zero
through seven are invalid since they correspond to the cells of the processor
state area. Note that when execution of a program begins, each of the
global variables should contain the standard "undefined" value (see Section
2.6, The "Undefined Value"); the processor does not itself initialize these

variables.

3.3. Runtime Stack

As was mentioned earlier, the processor maintains a pushdown stack for
storage local to each function activation. As shown in Figure 3.4, a stack
frame (entry) contains one word for each formal parameter or other local
variable, two words of local processor state information, and a vafiable
number of words containing descriptors for temporary wvalues. At any momént
the most recently activated function is being executed, and its stack frame,

called the current frame, is on top of the stack.

11 Joray 73

SBASE: & -] °
i Fireh ehack fravie
; } Secand s\'o.ck fame
& Je
'foer pqmnéef W\A'b
resultd dlher foca] variobles
 LBASE! —>1 Qasf LRASE . Tof stack framee
function descriyter PCTR
Yengorar clorge
LTop: —> .J
& e space ‘-T
. l o0
4 1 11
Note: fhe funchion doscripter b fhe (lewsing form - Lodian wunber
precedure Seqmod seleddar

APL Ruvhine Stack
Fiav.fe 3.4

14

15

Several state variables are used to delimit the stack. SBASE contains
the address in the data segment of the first word of the first (oldest)
stack frame, and is never changed by the processor. LBASE always points
to the current stack frame, and LTOP points to the topmost temporary value
cell of the current frame. These two state variables contain addresses
relative to SBASE, easing relocation of the stack within the data segment.
The processor updates LBASE for each function call or return. LTOP is
decremented by the various processor instructions when they remove their
operand(s), and is incremented when they stack their result(s).

LBASE points not to the first word of the current frame, but to the
first word of local state information. The local variables are addressed
by negative integers (-1, -2, etc.), which the processor interprets
relative to LBASE. If a function has a result variable, it is always
assigned the address -1 (so the result variable is in the cell immediately
preceding the first word of local state information).

The local state information in a stack frame merits some discussion.
Since stack frames are not of constant length, some form of backpointer is
necessary. This need is filled by the "last LBASE" field, which contains
the value of LBASE for the function activation immediately preceding in the
stack. The "function descriptor" and "PCTR" fields in a stack frame refer
not to the preceding activation, but to the given one. These fields
identify, respectively, the function activated and the location in that
function of the next instruction to be executed. In the context of a given
program, a function is identified by one bit to select between the two
procedure segments together with an 1l1-bit integer designating one of the

functions in that segment. The location of an instruction is always

16 .

specified as a byte address in the containing function block of the first
byte of the instruction (which may be one or more bytes long). In this

manual, unqualified mention of the state variable PCTR will always refer to

the field of that name in the current stack frame.

3.4, Array Block Storage

Descriptors for array values exist in various parts of the data segment:
in global variables, in local (and formal parameter) variables, and in
temporary stqrage cells. The actual arrays, however, are gathered together
in array block storage. Space in this region is dynamically allocated using
a scheme of "boundary tags and roving free pointer," as described in The Art

of Computer Programming, Vol. 1, by Donald Knuth (Addison-Wesley, 1968).

Array block storage consists of a sequence of reserved and free blocks.
Each reserved block contains an array, whose reference count field is by
definition nonzero. (See Section 2.4 for the description of the structure
of an array per se.) As the name suggests, free blocks contain space
available for future use. In the interest of avoiding fragmentation of
storage, no free block is allowed to exist adjacent to another free block
(see Figure 3.5 for a typical configuration).

When the array in a reserved block is no longer needed, there are four

cases to consider:

(1) Both the preceding and following blocks are free; the block
being freed should be coalesced with both its neighbors into

one hig free block.

(2) Only the preceding block is free; it should be extended to

include the following newly freed space.

IZ j&v\umy }3

j
i

Free

Reserved

Reserved

free

Reserved

Free

ﬁ‘
4
'y
)

Free

Duwwy

Typ'xcal APL Aﬂ'ﬂ)’ S‘foruje Con{'gura‘hoh
Fgwe 3.5 |

17

18

(3) Only the following block is free; it should be extended to

include the preceding newly freed space.

(4) Neither the following nor the preceding blocks are free. The

blocic being freed cannot be coalesced.

Figure 3.6 shows the format of reserved and free blocks from the
allocator's point of view (thus leaving out the details of the array in a
reserved block). Note that given the starting location of a block, it is
possible to tell whether the block is free or reserved (since the Boolean
field THISFREE occupies the left-most bit of the first word of every block).
Also, every reserved block has another Boolean field, PREVFREE, indicating
whether the preceding block is free. With these fields and the SIZE fields
it is possible to discriminate between the cases (1) through (L) listed
above.

All of the free blocks in the array block storage area are joined into
a doubly linked ring using the NEXT and LAST fields appearing in every free
block. The state variable ROVER always points to some member of this ring.
To ensure that the ring is never empty (so the value of ROVER is well
defined), there is a dummy free block with an indicated size of zero which
can never be allocated. This dummy free block serves another purpose. It
lies at the very end of array block storage, and has its THISFREE bit set
false (!) to inhibit coalescing with the last real block. TFigure 3.7 gives
a typical configuration of the free block chain.

Note (in Figure 3.6) that a reserved block may end with several words
of "slop" which are not necessary to hold the actual array. A field named
SLOP in the first word of the block holds the number of slop words, which

incidentally are not counted in the SIZE field. The main reason for slop

7]amary 1993

19
rTHISFREE (1tt)
As . "
5 Y
g SLOP SizZE
. SIZE werds
d d
Keserved block:]
/ v
s;//,‘ s \T e
‘["m(smae (164)
A 15 1o
1 SIZE T
NEXT LAST
Free b\d'»l‘: \ / SIZE werds
=R e N 51—1
SIZE ‘

= field o{ a\ array

| ><]= uweJordo?eyaoe

APL Arm/ S‘fcmge Resered & fre Block Forwals
F‘taure 3.6

11 Jenuary 13

KOVER:
o ‘ '1. Ny
9 o~
. o =g
ny
, i Nz
= (-
a* ﬁe
\]
i Ny
=) -~
o o
N3
Ol 0
-.
APL Artay g}’om@e’

Typical Free Chain COvs{\jwa}im

Fiqwe 3.1

20

+— Free Hocks

-~ Dmmy'ﬁ!e bleck

21

words is that a free block must be at least three words long; if a smaller
packet of unused words is created (by breaking a larger free block), it

must be attached to the preceding reserved block as slop.

22

4. The Procedure Segment

4.1. Function Blocks and the Function Directory

Just as an APL source program consists of a set of function definitions,
a procedure segment contains a sequence of function blocks. In the interest
of function block relocatability, the procedure segment begins with a
directory each of whose entries contains the starting address in the segment
of the corresponding function block. Thus each function can always be
referred to by a unique ordinal number, even if the lengths of functions

change. Figure 4.1 shows the over-all layout of a procedure segment.

4.2. Components of a Function Block

A function block is the compiled version of an APL source function
definition, and is diagramed in Figure 4.2. The two-word header contains
various flag and fields; it corresponds roughly to the header or "line zero"
of a source function. Next in a function block is the actual code, a
sequence of variable-length instructions. Completing a function block is
its line table, which serves to map APL source statement numbers into

addresses in the code.

h.2.1. Function block header. The fields in the header of a function

block have the following meanings:

CALLTRACE--if this bit is one and the state flag FCNCTRC is also
one, the processor will trap just after execﬁting a call instruction
designating this function;

RTNTRACE--if this bit is one and the state flag FCNRTRC is also one,

the processor will trap just before returning from this function;

3 Tauuaq 13

0

directery eitry @ *x

direstery tu'fry {

diretery bleck { Jirecfory eﬁ{'r[2

directary enfry n

fusckion block 1

-
3

'Fuud‘iev\ blaks <- L ‘Fuuc'l"m dlack 2

R

Y
m O
1" é ®
)
Y o\) e e e P

} funmction black YU

This Sield, wed used by dbe APL pracessor; containg e Enz'i of fe coresponding bleck.
#% Directory entry @ canvespouds o fhe directsy black ice!f

APL Prca&m Se,amed
Fijuve 4‘1

13 Jowuary 13

HEADER

CODE

LINE TABLE

2l
CALLTIRACE
Rmmce} 1 bid each
ot ResuLt
‘ r 12 4 12)
- i
NLINES NARGS NL&ALS 1
< 2 words
NCODE l
&
[: A
instructiong ins"rudion,_ inste
uch'ons 5ns+mc‘don4
{ NCODE werds
== : ==
ins’ﬂ'ud"m!“_t "REURN®
\ y
A
ai A
< == : f : T r&%ﬁg] word
G- Nunes l
-
APL Funchion Bleck

Fi«jw'e 42

$

25

RESULT--if this bit is one, the function returns a value (the contents
of the local variable with address -1);

NLINES--the number of lines in the source function from which this
function block was compiled (also the number of entries in the line table);

NARGS--the number of actual parameters with which this function should
be called;

NLOCALS--the number of local variables (including the result variable,
if any) required by this function;

NCODE--the number of 32-bit words occupied by the code in this function

block.

4.2.2. Code. Instructions for the APL processor are not of fixed
length. Most instructions are one, two, or three bytes long. One
instruction is five bytes long, and another is 2 + kn Ybytes long (for
any n > 0). Detailed descriptions of each of the instructions is the
subject of Section 6, but it would be appropriate here to state that the
last instruction in the code for every function should be a "RETURN"
instruction (see Section 6.3). This way a function will return if the flow
of control "runs off the end." Following this last instruction will be zero

to three bytes of garbage to fill out the last word of code.

4.2.3. Line table. The sole use of the line table is made by the
"BRANCH" instruction (i.e., APL's monadic right arrow). This table consists
of a sequence of 16-bit elements, ostensibly one per line of source
program. Each element is the function block-relative byte address of an.
instruction (presumably the first instruction compiled from the corresponding
source line). Note that the function block-relative byte address of the
very first instruction in a code body is 8 , due to the preceding two words

(at four bytes per word) of header.

.26

5. Controlling the APL Processor

In Sections 3 and 4 a description of the static states of the data and
procedure segment components ‘of a program i3 given. Sections 5 and 6 are
devoted to the dynamic aspects of executing u program. The effects of the
individual instructions are given in Section 6; this section describes how
the processor is commanded to start and stop cxecuting a particular program.

In an over-all view of the CRMS system, the APL processor appears as
an i/o device to the SIMPLE processor. Five Preassigned cells in central
memory and the two external communications flipflops are associated with
the APL processor "device." The flipflops will be referred to as FFy, and

FFAS , and have the following properties:

(1) The APL processor can read (sense state = § or = 1) and reset

(set state to @) FFg, » While it can set FF)q (to state 1);

(ii) The SIMPLE processor can set FFSA , and can read and reset

FFAS .

Here are the preassigned memory cells and their usage:

(i) APLCOMWD (457B)--the SIMPLE processor places a command (either

"start" or "stop") here for the APL processor;

(ii) APLSTATWD (460B)--the APL processor places a status code here

whenever it stops;

(iii) APLDSEGWD, APLPSEGAWD, APLPSEGIVWD (L61B, L62B, L63B, respectively)
—--before the SIMPLE processor commands the APL processor to
start, it sets up these words to describe the data segment,
procedure segment, and alternate procedure segment, respectively,
of the program to be run. Figure 5.1 gives the format of these

"segment descriptors."

i &‘3&&7 73

16

16

BASE

LENGTH

BASE 1 'H»\Q a{’f;aaiu'k ai;\ress " cev&a;\ Memar, o{ ’HM ‘F\l'sl' weed 5{ the &Jm.ut

LENGTH s fhe ij'H«,'th werds, & he 5€3wen‘l.

Sesme\d Descriphy Format

Fiqure 5.1

Ugtop" [none reharmed

(Commarnd 3’:«5) / {ehetus relumed

APL Processar Stades
Fiﬁu\'e 5.2

28

The APL processor is always in one of two states, idle or running a

program--see Figure 5.2. A transition from idle to running occurs only
when the SIMPLE processor gives a start command. A transition from running
to idle occurs either when the SIMPLE processor gives a stop command or
spontaneously when the APL processor encounters a trap condition in the
program being executed, whichever happens first. These start and stop
commands are given in the following way: First, the SIMPLE processor sets
the low order (right-most) bit of APLCOMWD: zero means stop; one means
start (the other bits of APLCOMWD have no significance). Then, the
processor sets FF . Some time later the APL processor will notice that

SA

FFSA is set, will reset it, and will obey the command indicated by the

current setting of APLCOMWD.
Whenever the APL machine goes idle, it issues a status code. These
codes are issued with a method like that used for giving start/stop commands.

The APL processor stores the status code in APLSTATWD and sets FFAS .

Eventually the SIMPLE processor will notice that FF is set, reset it,

AS
and then look at the current value of APLSTATWD. Here are the code values:

1 = "whoops" ("start" command received while running; APL processor stopped)
2 = "ok, stopped"
3 = "trap" (APL processor encountered a trap condition in program being run)

Some notes on this interface to the APL processor are in order. First
of all, when the processor is running and is given a stop command, it could
take as long as a few milliseconds before the shutdown occurs and the "ok,
stopped" status is issued. (Sometimes the APL processor really gets wrapped

up in its work!) Second, the SIMPLE processor should be sure the APL

29

processor is idle before it writes into the segment descriptors APLDSEGWD,
APLPSEGPWD, and APLPSEGIWD. This is because the APL processor looks at

these cells from time to time as long as it is running.

30

6. The Instructions

This section details the execution of each APL processor instruction,
including operands, results, and possible traps. We begin with some

general information.

6.1. Operands, Results. and Reference Counts

Instructions remove their operands from the top of the stack and replace
them with their results. If an instruction takes more than one operand,
then the first operand is in the stack cell addressed by LTOP, the second
operand is addressed by (LTOP-1), etc.

As was mentioned in section 2.4, every array block has a reference
count field giving the number of array descriptors currently pointing to
that array. This field is automatically incremented cud decremented by the
various instructions as they create and destroy array descriptors. For
example the SHAPE instruction, which takes a single operand, decrements the
reference count of its operand (providing the operand is an array) before
replacing the operand by the result on the stack. Whenever a reference
count becomes zero, the space occupied by that array is automatically
returned to the free chain in array block storage.

6.2. Traps

A trap results when the processor encounters some abnormal condition
during the execution of a program. Here is a conceptual view of trap gen-
eration. Just before it executes each instruction, the processor consults
an infallible oracle to find out whether execution would fail for any
raason. If not, the prccessor executes the instruction (successfully, of
course), and proceeds to the next instfuction. Otherwise, the processor

stops before executing the instruction. The processor sets the state

31

variables TRAPCLASS and TRAPNUMBER to a code describing what caused the

trap, but leaves the rest of the program state untouched. (Thus PCTR

points to the instruction which cannot be executed, and that instruction's
operands are still on top of the stack.) Finally, the processor issues a
"trap" status to the SIMPLE processor and enters its idle state, as described
in section 5.

After each instruction in the following descriptions is a list of traps
which could result; Appendix 2 summarizes all the traps by class and number.
Note that traps of class 3 (a trap denoted (n,m) means the trap of class n
and number m) are all due to a system error (compiler and/or processor), and
are not normally expected to occur!

A few traps are not explicitly listed under the individual instructionc
since they apply to virtually any instruction. These are the (3,1), (3,2),
and (3,3) traps, signifying the processor encountered a bad (too large)
address supposedly pointing into the procedure segment, the runtime stack,
and the rest of the data segment, respectively. The other special trap is
the step (2,1) trap, which is intended as a debugging aid. It occurs when
the processor is in step trace mode (i.e., the state flag STEP is equal to
one) and completes the execution of an instruction. 1In this case it is the
next instruction which is considered to have generated the trap (so, for
instance, the PCTR points to this next instruction).

6.3. The Individual Instructions

Following are the actual descriptions of the instructions. (Appendix 1

lists.all the instructions in alphabetical order.)

1 February 33

SHORT.LOCAL 0f L

ie

T Jeb
O j+

=3 il
[

LONG_LOCAL Lg
1111 12
Long_aoaa (olthlt G

Lg and Ly are focad addressess: \'\eﬂq‘["we ‘m\‘eﬁers in two's CbMpkMeu'}
ho“’a‘l‘iou aud fruncated +o SIX awd ‘N:ln&z 5136, \'tSfec‘HWIY- Thug ~é4'$ L5~<.-1,
and 4096 Lp¢-1 are sdtisfied. |

G is a 3‘fob49 address: a twelve-bit uns'tjhe.J ‘m“qe‘, which ghauld
be hrjer‘ than seven.

The FETCH Fo.m'\b'
Fijure 6.1

33

The FETCH FAMILY

(SHORT_LOCAL, LONG_LOCAL, and LONG_GLOBAL)

Execution of a FETCH instruction pushes & copy of the descriptor which
is the value of a designated variable onto the runtime stack. The first
two forms, SHORT LOCAL and LONG_LOCAL, always designate a local variable
(or formal parameter variable) of the current function activation; a
LONG_GLOBAL instruction always refers to a global variable. A local variable
is addressed by a negative integer, which the processor interprets relative
to the value of the state variable LBASE. As shown in Figure 6.1, this
negative integer, in two's complement representation and truncated to
six or twelve bits, is explicitly contained in the instruction, SHORT LOCAL
or LONG_ILOCAL, respectively. A global variable is addressed by an integer
larger than seven, which the processor interprets relative to the start of
the data segment. (Addresses zero through seven are invalid since they
correspond to the words of the processor state area.) Each LONG_GLOBAL
instruction has a twelve-bit field holding the address of the variable to
be affected.

As an aid in implementing call-by-reference function arguments, one
level of indirect addressing is possible. If the variable addressed by any
FETCH instruction contains an indirect parameter word descriptor (see
Section 2.5), then the instruction loads the value of the variable indirectly
addressed by this descriptor. Indirect parameter word descriptors are
produced by the REFERENCE instruction (q.v.).

Traps:
(3,6)--I1legal indirect chain if an indirectly addressed variable con-

tains another indirect parameter word descriptor.

34

(10,0)--Value error if the variable directly or indirectly addressed by

a FETCH instruction contains a descriptor for the "undefined value."

(1,1)--Runtime stack overflow if SBASE+LTOP = address of last cell in

data segment.

29 Xamqry 13
' 35

11 o
(" ol Ls \
'111 s 1111 12
atftl s | < foitfolo Ly >
1111 i2
L [olifoht G J

8 s & Sv.bopnm*'\eh code:

ASSIGN_INDEXED, rank S, f 1£5¢15

ASSIGN it S=16
ASSIGN_NORESULT f S=17
REFERENCE i S=18
TEST_DEFINED f S=19

Ls ! LQ: and G are locol o E‘Obd cddreSes, as Ae‘:m«f n F‘lcaure
(SHORTLOCAL, LONGLOCAL, and LONGGLABAL |wsiructions).

The MEMREF Fami\y
Fiaw« 6.2

36

The MEMREF Family

These instructions share a common format; the execution of each involves
a variable designated by a field of the instruction itself. As shown in
Figure 6.2, a MEMREF-family instruction is two or three bytes long. The
first byte contains the opcode for the MEMREF family together with a
subopcode selecting a member of the family. The last byte or pair of bytes
addresses the variable to be affected; this address takes a form identical
to the SHORT_LOCAL, LONG_LOCAL, or LONG_GLOBAL instruction which would be
used to load the value of the same variable onto the stack.

One level of indirect addressing is provided by the MEMREF instructions,
Just as with the FETCH instructions. If the variable directly addressed by
a MEMREF instruction contains an indirect parameter word descriptor, then
the instruction (ASSIGN, etc.) applies to the variable indirectly addressed
by this descriptor.
Traps from MEMREF instructions (see also déscriptions of the individual
instuctions):

(3,7)--Malformed address field.

(3,6)--I1legal indirect chain if an indirectly addressed variable

contains another indirect parameter word descriptor.

(3,8)=-Undefined suboperation code.

ASSIGN_INDEXED

The first sixteen of the thirty-two possible MEMREF suboperation codes
all stand for the ASSIGN_INDEXED operation, which is compiled for the APL
assignment operator when the variable on the left-hand side is subscripted.
Let RANK be the value of the suboperation code of the instruction,

1 < RANK < 15 . Then the instruction takes (RANK+1) operands. The first

37

RANK operands are the subscripts, which are limited to scalars. The last
operand is the vélue computed by the code compiled from the right-hand side
of the assignment, and must also be scalar. The variable addressed by the
ASSIGN_INDEXED instruction must hold a descriptor for an array of rank
RANK. If Si is the value of the ith subscript operand and Li is the
length of the e coordinate of this array, then O < (Si—IORG) <Ly
must hold for 1 < i < RANK. The execution of this instruction substitutes

the value of its last operand for the element in the array indexed by

RANK RANK
) [(s.-IORG) = T L,] .
i= . j=i+l Y

ASSIGN_INDEXED returns on the stack the value of its last operand,
Traps:
(3,4)--Missing operand(s) if LTOP<(LBASE+RANK+2).
(3,5)--Unknown descriptor type if the value of the addressed variable

or of any of the operands is not a scalar or an array.

(5,0)--Rank error if the value of the addressed variable is a scalar,

or if any of the operands is an array.

(9,1)--Wrong number of subscripts if RANK# rank of the array which is

the value of the addressed variable.

(7,0)--Type error if any of the subscripts (first RANK operands) is a

character.

(8,5)--Domain error if any of the subscripts is a nonintegral floating-

point number.

(9,2)--Index error if OS(Si-IORG)<Li fails to hold for some i,

38

ASSIGN, ASSIGN_NORESULT

These two instructions perform assignment to an unsubscripted variable.
Each takes a single operand from the stack, the value to be assigned.
Execution of an assignment stores this value into the variable directly or
indirectly addressed by the instruction (see The MEMREF Family). ASSIGN
also returns on top of the stack the value assigned to the variable.
ASSIGN_NORESULT, as its name implies, returns no value. It is equivalent
to an ASSIGN instruction followed by an EAT1 instruction, and could be

compiled for an assignment which is not nested in a larger expression.

"Traps:

(3,4)--Missing operand if LTOP<(LBASE+2).:

REFERENCE

This instruction returns on the stack an indirect parameter word
descriptor for the variable it directly or indirectly addresses. It is
compiled for a variable reference used as an actual parameter to a
user-defined function specifying call-by-reference for the corresponding
formal parameter. The indirect parameter word descriptor (see Section 2.5)
contains one bit to designate a local or global variable, and a sixteen-bit
address field. This address is just a data segment address for a global
variable, and is an SBASE-relative address for a local variable. REFERENCE

takes no operands from the stack.

Traps:
(3,1)--Runtime stack overflow if (SBASE+LTOP) = address of last word

in data segment.

39

TEST DEFINED

This instruction returns an integer-type value of zero or one depending
on whether the variable it directly or indirectly addresses contains or

does not contain a descriptor for the "undefined value." TEST DEFINED

takes no operands from the stack.
Traps:

(3,1)--Runtime stack overflow if (SBASE+LTOP) = address of last word

in data segment.

g E&éamvy 13

S a su.bOPeIa'hoh code:

monadic ﬁ

Ayoéic

<

[

L

1111 4
0o} 5

S opﬁfd‘or
0 (DENTITY
1 NEGATIVE
4 FLOOR
3 CEILING
4 MAGNITUDE
5 NoT
6 | TEST_NUMBIR ¥
7 | CONVERT *
2 SUM
9 DIFFERENCE
10 | PRopUCT
11 | QUOTIENT
12 | LOGICAL_PRODUCT
13| LoGicAL_5uM
41| Less .
15 | EQuaL*

¥ These operators accept character operands,

The GENSCALAR Fawily
Fijure 63

40

41

The GENSCALAR Femily

The instructions of this family (see Figure 6.3) correspond to (a subset
of) the APL "primitive scalar functions." Some are monadic, and the rest
are dyadic. Operands of any rank are allowed; the APL\360 rules of
conformity are exactly followed. Since operands of rank greater than zero
are treated elementwise, the descriptions of the individual GENSCALAR
instructions® are in terms of scalar operands.

Normally the APL processor obeys stop commands from the SIMPLE
processor only between instruction executions (see Section 5). The only
exceptions are the GENSCALAR instructions, some of which spend as long as
15 microseconds per element of the result (which could have thousands of
elements). If a command from the SIMPLE processor arrives during the
execution of a GENSCALAR instruction, the APL processor sets the INTRPT
state flag to one and stores some internal quantities in the state variables
saved-NELTS,..., and saved-RPTR (see Figure 3.2). Then the processor stops
Just as it would between instructions. If the interrupted program is to be
restarted later, then the "saved-XX" state variables must be preserved
unmodified, as must the statevflag INTRPT and the state flags marked as

temporaries in Figure 3.3.

Traps from GENSCALAR instructions (also see descriptions of individual
instructions):
(3,4)--Missing operands if LTOP<LBASE+3 for dyadic operators, or if
LTOP<LBASE+2 for monadic operators

(3,5)--Unknown descriptor type if either operand is not a scalar or

an array.

Lo

(5,0)-=Rank error if the ranks of the operands for a dyadic operator

differ and neither operand is a one-element array.

(6,0)--Length error if the ranks of the operands for a dyadic operator
are the same, but the operand shapes are different and neither is a

one-element array.

(1,2)--Array block storage overflow if there is insufficient free space
to create the result array.
IDENTITY

This monadic instruction returns its (integral or floating-point)

numeric operand unchanged.
Traps:

(7,0)--Type error if the operand is of character type.
NEGATIVE

This monadic instruction returns the same value as its numeric operand,

except with the opposite sign.

Traps:

(7,0)--Type error if the operand is of character type.

FLOOR

This monadic instruction returns the greatest integer not larger than
its numeric operand. The result is of integer type unless the operand is a
floating-point number greater than or equal to 223 in magnitude, in which

case only a floating-point representation is possible.

43

Traps:
(7,0)——Type error if the operand is of character type.
CEILING

This monadic instruction returns the least integer not smaller than its

numeric operand. The result is of integer type unless the operand is a

223

floating-point number greater than or equal to in magnitude, in which

case only a floating-point representation is possible.
Traps:

(7,0)--Type error if the operand is of character type.
MAGNITUDE

This monadic instruction returns the same value as its numeric operand,

except with positive sign.
Traps:

(7,0)--Type error if the operand is of character type.
NOT

The single operand for this instruction must be logical, i.e., equal
to zero or one (either integer or floating-point). The result is equal to

one minus the operand, and is always of integer type.

Traps:

(7,0)——Type error if the operand is of character type.

(8,5)--Domain error if the operand is a number other than zero or one.

TEST_NUMBER

This monadic operator takes any scalar for an operand. The result,

Ly

always of integer type, is one for a numeric (integer or floating-point)

operand and zero for a character operand.

Traps: none.

CONVERT

This monadic operator takes both character and numeric operands.
When given a character, it returns the corresponding character code as an
integer-type value. If given an integral number between zero and 255
inclusive (in eitherlinteger or floating-point representation), CONVERT

returns the character-type value possessing that code.

Traps:
(8,5)--Domain error if the operand is a number which is nonintegral,

negative, or greater than 255.

SUM, DIFFERENCE, PRODUCT

These dyadic instructions return, respectively, the sum, difference, or
product of two numeric operands. The result is of integer type if both
operands are of integer type, or if the result is zero. In every other

case the result is of floating-point type.

Traps:

(7,0)--Type error if either of the operands is of character type.

(8,1)--Integer overflow if both operands are of integer type and the

magnitude of the result is not less than 223,

(8,2)--Floating-point underflow if at least one operand is floating-
point and the magnitude of the result is less than o128 (but is greater

than zero).

ks

(8,3)--Floating-point overflow if at least one operand is floating-

point and the magnitude of the result is not less than o128,

QUOTIENT

This dyadic instruction returns the quotient of its first operand
divided by its second operand, both of which must be numeric. The result is

always of floating-point type.

Traps:

(7,0)--Type error if either operand is of character type.

(8,2)--Floating-point exponent underflow if the magnitude of the result

is less than 27!'2%® (put is greater than zero).

(8,3)--Floating-point exponent overflow if the magnitude of the result

is not less than 228,

(8,4)=~Zero divisor if the second operand is zero.

LOGICAL PRODUCT, LOGICAL_SUM

These dyadic instructions return, respectively, the logical conjunction
and disjunction of their operands, as shown in the truth table below. Each
operand must be either zero or one (integer or floating point); the result

will always be of integer type.

A | B|ALPROUCT B | AL SUMB

H F O O
H O H o
H o o o
H = = O

L6

Traps:

(7,0)--Type error if either operand is of character type.

(8,5)--Domain error if either operand is a number other than zero or one.

LESS

This dyadic instruction returns one if its first operand is smaller
than its second operand, and returns zero otherwise; the result is always of
integer type. Execution of the LESS instruction involves finding the
difference of its opérands, hence the same traps as listed under DIFFERENCE

are possible.

Traps: same as DIFFERENCE.

EQUAL

This dyadic instruction returns one if its operands are equal, and zero
otherwise. The result is always of integer type, but the operands may be
any scalars (character, integer, or floating point). The definition of
equality used is as follows. A character scalar is equal only to another
character scalar possessing the same character code. Two numbers are equal
if their difference (as would be returned by the DIFFERENCE instruction) is

Zero.

Traps:
(8,1)--Integer overflow if both operands are of integer type and the

magnitude of +“heir difference is not less than 223,

(8,2)--Floating-point underflow if both operands are of numeric type
and at least one operand is floating-point and the magnitude of their

difference is less than 2-'2%® (but is greater than zero).

(8,3)-~Floating-point overflow if both operands are of numeric type
and at least one operand is floating-point and the magnitude of their

difference is not less than 2128,

b7

29 Tanary 33

010f1{RANK

The INDEX [rstruction

vFiaure 64
1111 12
HOJ11S ™M

9 s the Sign (1 negaﬁxle, 03 nmejdive).

M isdhe m«gt\'s*u& , on u.v\s't’nd i'\‘\e)er,

The SHORT_CENSTANT Instruction

Figu.\'e 6.5

48

Lo

INDEX

This instruction corresponds to the indexing operation of APL\360
restricted to scalar subscripts. The first operand is the array to be
indexed; its rank must be equal to the value of the RANK field of the INDEX
instruction itself (see Figure 6.4). The rest of the operands are the
integer or integral floating-point subscripts in left-to-right order. If
Si is the ith subscript and Li is the length of the ith coordinate

of the first operand, then Os(Si—IORG)<Li must hold for 1<i<RANK. The

result returned by INDEX is the value of the ravel of its first operand

indexed by
RANK RANK »
) [(s;-T0RG) * T I, 1 .
i= j=i+l J
Traps:

(3,4)--Missing operand(s) if LTOP<(LBASE+RANK+2).

(3,5)--Unknown descriptor type if the first operand is not a scalar
or an array, or if any other operand is not a scalar or an array or the

"undefined value."

(5,0)--Rank error if the first operand is a scalar, or if any other

operand is an array or the "undefined value."
(9,1)--Wrong number of subscripts if RANK# rank of first operand.
'(7,0)——Type error if any subscript is a character.

(8,5)--Domain error if one of the subscript operends is a nonintegral

floating-point number.

(9,2)--Index error if OS(S:.L—IORG)<Li fails to hold for some i,

1<i<RANK.

50

SHORT _CONSTANT

This instruction takes no operands from the stack, and places one
integer-type result on the stack. The sign and magnitude of the result,
say S and M, respectively, together constitute the 13 right-most bits of

the SHORT CONSTANT instruction itself (see Figure 6.5).

Traps:

(1,1)--Runtime stack overflow if room for one more cell on the stack

does not exist.

E:f? Tanmqry 13

S is & subseration code, and E is edm inforwation present for some values of S:

aperedor

......

E preseul ¢

Do -bdbwre—ol\n

UNDEFINED

EATL
[NTERCHANGE
SETORIGIN
GETORIGIN
SHAPE

RESHAPE

RAVEL
CATENATE
[NDEX —GENERATOR
CONSTANT-SCALAR
CONSTANT-VECTOR
BRANCH

GO

GO_TRuE
GO_FALSE
RETURN

CALL
NO_QPERATION
BREAKPOINT
ATTENTION

3

S N

J .
Yes, see F;gure 6-}

Yes, see Fiqure 63
No

Yes, see Figure (9

No
Yeﬂ see Figure 6.10

Ne

The ETC Fom}ly

Fc‘aure 6.6

51

o2

The ETC Family

The instructions in this family (see list in Figure 6.6) are not
actually related, except that the first two bits of the opcode of all of

them are the same.
Traps (see also the descriptions of the individual instructions):

(3,11)--Undefined suboperation code in ETC-class instruction.

UNDEFINED

This instruction takes no operands. TIts sole effect is to place a

descriptor for the undefined value on top of the stack.

Traps:
(1,1)--Runtime stack overflow if room for one more cell on the stack

does not exist, i.e., if SBASE+LTOP = address of last word in data segment.

EAT1

This instruction takes one operand, of any type, and produces no
result. It is useful at the end of a statement to remove the value of the

statement from the stack.

Traps:

(3,4)~-Missing operand if LTOP<LBASE+2.

INTERCHANGE

This instruction takes two operands, of any type, and returns two
results by simply interchanging its operands on the top of the stack. The
main use for INTERCHANGE is to reverse the operands to LESS to get the

effect of a "GREATER" instruction.

53

Traps:

(3,4)--Missing operand(s) if LTOP<LBASE+3.
SETORIGIN

This instruction takés oné operand, produces one result, and has a side
effect. The operand must bé either zero or one (either integer or floating-
point); the state flag IORG (see section 3.1) is set accordingly. The result
of this instruction is the previous value of IORG, zero or one, and is
always of integer type. As a special case, the operand to SETORIGIN may be

a suitable one-element array.
Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

(3,5)--Unknown descriptor type if the operand is not a scalar or an array.

(6,0)--Length error if the operand is an array with other than one
element.

(7,0)--Type error if (the element of) the operand is a character.

(8,5)--Domain error if (the element of) the operand is a number not

equal to zero or orne.
GETORIGIN

This instruction takes no operands; it returns as its single result
the current value of the IORG state flag, mero or one. The result is always

of integer type.
Traps:

(1,1)--Runtime stack overflow if room for one more cell on the stack

5k

is lacking.
SHAPE

This instruction corresponds éxactly to the "monadic rho" operator of
APIN360. Its singlé operand may bé any scalar or array. The result is
always an array of rank oné whose length is equal to the rank of the oper-
and; the integer type eléménts of this array are Jjust thé lengths of the
coordinatés of the operand. For éxample, SHAPE returns the empty vector

when applied to any scalar.
Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

(3,5)--Unknown descriptor type if the operand is not a scalar or an
array.

(1,2)--Array block storage overflow if insufficient free space to cre-

ate the result array exists.
RESHAPE

This instruction corresponds exactly to the "dyadic rho" operator of
API\360. The first operand is a vector of non-negative integral numbers
(special case: a single such scalar); the result is an array with these
numbers as its shape, and elements taken from the ravel of the second oper-

and.
Traps:

(3,4)--Missing operand if LTOP<LBASE+3.

55

(3,5)--Unknown descriptor type if either operand is other than a scalar
or an array.

(5,0)--Rank error if the first operand has rank larger than one.

(7,0)--Type error if (any element of) the first operand is a character.

(8,5)--Domain error if (any element of) the first operand is a number
which is nonintegral, negative, or not less than'216, or if the product of
the elements of the first operand is not léss than 216.

(6,0)—-Length error if the second operand is an empty array but the
shape for the result (as givén by the first operand) is nonempty.

(1,2)--Array block storage overflow if insufficient free space exists

to allocate the result array.
RAVEL

This instruction corresponds exactly to the "monadic comma" operator
of APL\360. Its single operand may be scalar or array; the result is always
a vector (rank one array) having the same number of elements as the operand
has. The elements of the result are the same as the elements of the oper-

.

and, taken in the standard APL ravel order.
Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

(3,5)--Unknown descriptor type if the operand is not a scalar or an
array.

(1,2)=--Array block storage overflow if insufficient free space exists

to allocate the result array.

56

CATENATE

This instruction corresponds to the "dyadic comma" operator of APL
restricted to operands of rank zero or one. Thé result is always a vector
(rank oné array) whose length is equal to the sum of the number of élements
in both operands. The éleménts of thé résﬁlt are Just the elements of the
first operand followed by the elements of the second opérand. Note that the
elements of the operands for CATENATE may bé any mixture of characters and

numbers.
Traps:

(3,4)--Missing operand(s) if LTOP<LBASE+3.
(3,5)--Unknown descriptor type if either operand is other than a scalar
or an array.
(5,0)=-Rank error if either operand has rank greater than one.
(6,0)--Length error if the sum of the lengths of the operands is not
16
less than 2 .

(1,2)--Array block storage overflow if insufficient free space exists

for the result array.

INDEX_GENERATOR

This instruction corresponds exactly to the "monadic iota" operator of
APL. 1Its operand should be a nonnegative integral number or one-element
array; the result is a rank one array whose length is equal to the wvalue of
the operand. The elements of the result are consecutive integers beginning

with the current index origin (i.e., the value of the state flag IORG).

>T

Traps:

(3,4)--Missing operand if LTOP<LBASE+2..

(3,5)--Unknown déscriptor typé if the opérand is not a scalar or an
array.

(6,0)--Length error if the operand is an array with length other than
one.

(7,0)--Type error if the operand (or its element if it is a one-element
array) is a character.

(8,5)--Domain error if the operand (or its element) is a number which is

16

negative, nonintegral, or not less than 2

(1,2)--Array block storage overflow if sufficient free space is lacking.

30 Tanugry 73

—
pury N
(&)
O

D is oy salar deseriplor (see Figure 21)

The CONSTANT_SCALAR Instruction.
F‘\ju.re 6.3

58

>9

CONSTANT SCALAR

This instruction is five bytes long (see Figure 6.7). The first byte
is the opcode and the other four bytes (32 bits) constitute a descriptor
for some scalar (character, integer, or floating-point) to be returned on

top of the stack. (CONSTANT SCALAR takes no operands from the stack.)

Traps:

(1,1)--Runtime stack overflow if (SBASE+LTOP)= address of last word

of data segment.

30 J&nmfy 13

60

R9 85? 4
"] A0LIANTLNYLONGD 24l

2 Y5 19 aoﬁ:oauv Jo»>S ko 1Y

'5G25NsQ e v st N

LMM il >
zo vnc—.- ao \I\.U‘N” ﬂﬁ M H
* = n A ve-o > 11
spom (2-n e

Ampunog pom ny-~

61

CONSTANT VECTOR

This is thé only instruction which must be aligned with respect to the
word boundaries in the codé of a function block. TIts format is as follows
(see Figure 6.8):

(1) The ETC-class opcodé for CONSTANT;yECTOB;

(2) A byte containing a nonnegative integer count (less than 256);

(3) Zero, one, two, or three bytés which aie completely ignored to
fill out the current code word;

(4) "Count" 32-bit déscriptors (of any scalar type), one to a code
word.

The effect of this instruction is to return a vector (rank one array)
with those scalars as elements. (CONSTANT VECTOR takes no operands from

the stack.)
Traps:

(1,2)--Array block storage overflow if insufficient contiguous free
space exists.
(1,1)--Runtime stack overflow if (SBASE+LTOP)= address of last word of

data segment.
BRANCH

This instruction exactly corresponds to the "monadic right arrow" opera-
tor of APL\360. The instruction returns no result value, but has a side:
effect which depends on the value of its single operand:

(1) If the operand is a nonnegative integral number (integer or float-

ing point) not greater than the value of the current function block header's

62

NLINES field, then PCTR in the current stack frame is set equal to the con-
tents of the line table entry in the current function block indexed by the
value of the opérand;

(2) If the operand is an intégral mumber outside the range mentioned in
case (1) above, thé processor returns from the currént function just as if
it wéré eiecuting a RETURN instruction (q.v.);

(3) If the operand is a nonempty vector the first element of which
satisfies case (1) or case (2) abové, thén the action specified for that

case is taken;

(4) Else if the operand is an empty vector, the processor takes no

special action.

The BRANCH operator does not return a value in the usual sense that a call
to it could be nested within an expression (but of course in case (2) above

the current function may return a value).

Traps:

(3,4)--Missing operand if LTOP<LBASE+2.

(3,5)--Unknown descriptor type if the operand is not a scalar or an
array.

(5,0)--Rank error if the operand has rank greater than one.

(7,0)--Type error if the operand (or its first element if the operand

is a vector) is a character.

(8,5)--Domain error if the operand (or its first element) is not inte-

gral.

Also--in case (2) above, any trap listed under RETURN.

0 Torwary 13
63

{1 © i6

GO _ 1] 13 A
. 11 6 16

GO_TRUE Wiy 14 A
- 11 [16

GQO_FALSE yy 1s A

Ais a by‘fé address inthe cu\‘\'ev& function bleck o{ ah 'n-s{'ru::\’mh 1o &mns{-’er to.

GO, GO_TRUE, ond GO_FALSE lestrudions
Fijum 69

6L

This instruction does not correspond to any construct of APL\360. It
has no operands or results, but sets the contents of the PCTR field in the
current stack frame equal to the byte addres: ccntained in the second two

bytes of the three-byte GO instruction (see Figure 6.9).
Traps:

(3,1)--Procedure segment address too large if the given byte address

lies past the end of the current procedure segment.
GO_TRUE,: GO_FALSE

These three-byte instructions each take a single operand, the value of
which should be a numeric zero or one (either integer or floating-point).
Execution of GO_TRUE or GO_FALSE is the same as for GO, except that setting
PCTR is conditioned upon the value of the operand being one or zero, respec-
tively. As a special case these instructions accept a suitable one-element

array as operand; neither returns a result on the stack.
Traps:

(3,4)~-Missing operand if LTOP<LBASE+2.

(3,5)--Unknown descriptdr type if the operand is not a scalar or an
array.

(6,0)--Length error if the operand is an array with other than one
element.

(7,0)--Type error if the operand (or its solitary element) is a character.

(8,5)--Domain error if the operand (or its element) is a number other

65

than zero or one.
(3,1)--Procedure segment address too large if PCTR is to be set but

the given byte address lies past the end of the current procedure segment.
RETURN

This instruction of no operands causes the processor to return from
the current function, just as would be caused by executing a BRANCH to a
nonexistent line number. The return is accomplished by resetting the
state variables LBASE and LTOP to the values which were in effect when the
current function was called, and additionally pushing a result value on the
stack if the RESULT flag in the header of the current function is one (see
Figure 4.2). The new value for LBASE is taken from the "last LBASE" field
in the stack frame for the returning function activation (see Figure 3.L4).
LTOP is set equal to the old value of LBASE minus the qﬁantity
(NARGS+NLOCALS+1), where NARGS and NLOCALS are fields in the header of the
current function. The result value, if any, is taken from the first local

variable (the one with address -1) of the returning function.
Traps:

(2,3)--Return trace if both the global state flag FCNRTRC and the
RTNTRACE flag in the current function block's header are equal to one.

(3,12)--Attempt to return from bottom function activation in stack.if
value of "last LBASE" field in the current stack frame is not less than the
current value of LBASE.

(10,0)~-Value error if the function is to return a result but its

result variable contains a descriptor for the "undefined value."

20 T&muary 13

1 3 4 1 11

66

Ml 13 |NaRes|P FCNG

e’

—

function descriptor

NARGS is the number of q.rjuwevds the caller has pushed oo Hhe stack before

execch *H,ds) hshc+}on.

selecty the proacedure se{mht, Fequbxr or aHerw-i‘c, C,oh'{'adwinﬁ e funclion ‘De‘mj called,

N is fhe cien numw

The CALL Instruction

Ficjure e.10

er of Yhe Funclion imnj called.

67

CALL

Execution of this instruction causes the processor to call a function,
i.e., to establish a néw frame on top of thé stack and maké it the current
one, updating LBASE and LTOP. Thé three—byté CALL instruction takes a
variable number (controlled by the NARGS fiéld of the CALL instruction) of
operands on the stack, the actual parameters to thé function being called.
Rather than being removed by CALL, these operands become thé formal para-
meter variables for the new stack frame. The other local variables of
this frame are automatically initializéd to the "undefined value'". The
"function descriptor" field in the new frame is set equal to the field of
the same name in the CALL instruction itself (see Figure 6.10); the PCTR
field in the new frame is always set to 8, which is the byte address of the
first instruction in any function block. After the call is complete, the
state variable LTOP will be equal to (LBASE+l).

A function is in call trace mode if both the global state flag FCNRTRC
and the CALLTRACE flag in the header of the function are equal to one. Exe--
cution of the first instruction after the call to a function in call trace

mode always causes a call trace or (2,2) trap.
Traps:

(3,4)--Missing operand(s) if (LBASE+NARGS+1)>LTOP, where NARGS is a
field of the CALL instruction.

(1,1)--Runtime stack overflow if (SBASE+LTOP+NLOCALS+2)> the last ad-
dress in the data segment (NLOCALS is a field in the header of the called

function block).

68

NO_OPERATION

This instruction takes no operands, returns no results, and has no
side effects. It could be used, for example, to patch over an instruction

used for debugging that is no longer needed.
Traps: None.
BREAKPOINT

This instruction takes no operands, returﬁs no results, and in fact never
finishes execution; its sole effect is to cause a "breakpoint encountered"
(2,4) trap. Note that the PCTR field (in the current stack frame) is left
pointing to the BREAKPOINT instruction; to enable the program to continue
past the breakpoint, the PCTR must be increased by one (the length of this

instruction) before the program is restarted.
Traps:

(2,4)--Breakpoint trap (unconditional).
ATTENTION

This instruction is similar to BREAKPOINT (q.v.): it takes no operands,
returns no result, and always generates a trap. In this case the trap is an
"attention" (4,0) trap, and is intended as part of an escape mechanism so

that APL programs can call functions running on the SIMPLE processor.
Traps:

(4,0)--Attention trap (unconditional).

Instruction

ASSIGN . . .

.

ASSTGN_INDEXED .

ASSIGN_NORESULT

ATTENTION
BRANCH . . .
BREAKPOINT .
CALL .
CATENATE .
CEILING . .

CONSTANT SCALAR
CONSTANT_VECTOR

CONVERT
DIFFERENCE .
EAT1 .

EQUAL . . .
FLOOR . .
GETORIGIN
GO . « v . .
GO_FAILSE . .
GO_TRUE
IDENTITY .
INDEX

INDEX_GENERATOR

.

.

.

.

APPENDIX I

INDEX TO TIIE INSTRUCTIONS

Page Number

. 38
... 36
.. . 38
.. . 68
... 61
.. .68
... 67
. . .56
... b3
.« . 59

. 61

. .o bk

. hh
. . .52
.. . 46
R 5
. . .53
.. . 6k
.« .. 6k

. . 6k
R 1)
I o)

. 56

Instruction

INTERCHANGE .
LESS « « « . .
LOGICAI,_PRODUCT
LOGICAI, SUM
LONG_GLOBAL, .
LONG_IOCAL . .
MAGNITUDE .
NEGATIVE . .
NO_OPERATION .
NOT . . .
PRODUCT . . .
QUOTIENT . . .
RAVEL . . .
REFERENCE
RESHAPE . . .
RETURN
SETORIGIN

SHAPE . . .

-

SHORT_CONSTANT .

SHORT LOCAL .
SIM
TEST DEFINED .
TEST NUMBER .
UNDEFINED . .

69

Page Number

.. .52
A 1T
R 113
R 113
e+ « « 33
.+« 33
..o b3
. . k2
. . 68
... . b3
e o . oo bk
. L5

. . .55
.. . . 38
e « « . 5k
. . . 65
. « 53

. 5h

. . . .50
. . . 33

. o.oby
e e . . 39
... . L3
.« .. . 52

T0

APPENDIX IT
SUMMARY OF TRAP CLASSES AND NUMBERS

Class Number : Description
1 Storage overflow:

1 Runtime stack overflow

\V)

Array block storage overflow

2 Debug trap:

Instruction completed in step mode
Function call in call-trace mecde

Function return in return-trace mode

= w o

Breakpoint encountered

3 System error (processor and/or compiler):
Procedure segment address too large

Stack address too large

Global variable or array block address too large
Missing operand(s) for instruction

Unknown descriptor type for instruction operand
Double indirection encountered

Malformed MEMREF-family instruction

Undefined MEMREF suboperation

Undefined GENSCALAR suboperation

O o OV &= w N+

[}
o

Processor state OPNO field too large on interrupt restart

|
=

Undefined ETC suboperation

[
n

Attempt to return from bottom function activation in stack
Attention trap
APL rank error
APL length error

Type error--character operand(s) where numeric expected

oo =N O N1

Domain error:
Integer overflow
Floating-point exponen:; underflow
Floating-point exponent overflow

Division by zero

AV N VS I VI

Other domain error

9 Index error:

Wrong number of subscripts

Subscript too large or small (APL index error)

10 APL, value error

APPENDIX IIT

ARRAY BLOCK STORAGE ALLOCATION ALGORITHMS

FUNCTION MAKE(SCALAR N)
*

¥ THIS FUNCTION RETURNS THE ADDRESS OF A NEW RESERVED BLOCK WITH SIZE=N.
*
SCATAR P
P <« ROVER
WHILE P.SIZE<N DO
P < P.NEXT
GOTO GLOBALOVERFLOW IF P=ROVER
ENDWHILE
(P+P.SIZE).PREVFREE <« FALSE
ROVER < P.NEXT
IF P.SIZE-N<MAXSLOP THEN
P.LAST.NEXT < P.NEXT
P.NEXT.LAST < P.LAST
P.SLOP < P.SIZE-N
P.SIZE < N
P.THISFREE < FALSE
P.PREVFREE < FALSE
ELSE
P.SIZE < P.SIZE-N
(P+P.SIZE-1).SIZE « P.SIZE
P < P+P.SIZE
P.SLOP <« O
P.SIZE <« N
P.THISFREE <« FALSE
P.PREVFREE + TRUE
ENDIF
RETURN P
ENDFUNCTION

T1

FUNCTION FREE(SCALAR P)
*

% FREE THE BLOCK POINTED TO BY P.
*
SCATAR Q ,
P.SIZE < 2.SIZE+P.SLOP
Q < P+P.SIZE
IF P.PREVFREE=FALSE THEN
IF Q.THISFREE=FALSE THEN
Q.PREVFREE < TRUE
P.NEXT < ROVER.NEXT
P.LAST < ROVER
P.TAST.NEXT <« P
P.NEXT.LAST <« P
ELSE
P.SIZE <« P.SIZE+Q.SIZE
P.NEXT < Q.NEXT
P.LAST < Q.LAST
P.NEXT.LAST <« P
P.LAST.NEXT <« P
ROVER <« P
ENDIF
P.THISFREE <« TRUE
ELSE
IF Q.THISFREE=FALSE THEN
Q.PREVFREE < TRUE
ELSE
P.SIZE <« P.SIZE+Q.SIZE
Q.LAST.NEXT <« Q.NEXT
Q.NEXT.LAST <« Q.LAST
ENDIF
P <« P-(P-1).SIZE
P.SIZE <« P.SIZE+(P+P.SIZE).SIZE
ROVER <« P
ENDIF
(P+P.SIZE-1).SIZE <+ P.SIZE
RETURN
ENDFUNCTION

T2

	19730202-prm-crms_apl_processor_ref-002
	19730202-prm-crms_apl_processor_ref-003

