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INTRODUCTION 

In this report we investigate the impact of alternative market structures in 

an environment of stochastic demand and supply. Our method shall be to begin 

with the very simplest structures and build towards the richness found in 

real-world markets. 

To characterize the exact nature of stochastic demand and supply, we adopt the 

assumptions of the previous report in this series. We further assume the 

existence of "orders" which represent occurrences at discrete points in 

continuous time, generated by market participants as concrete embodiments of 

their individual willingness to buy or to sell the asset in question. To be 

consistent with contract law, we take orders to mean firm offers to buy or 

sell or sell under specified conditions, good until cancelled or withdrawn, 

which may result in completed contracts (transactions) when a buyer and seller 

agree on conditions. Market structure is taken to mean (1) the conditions 

which are permitted in orders, and (2) the rules and procedures of effecting 

transactions in a multiple-order situation. We classify orders into two 

groups, buy orders and sell orders. 

More formally, an order ¢i will be characterized as a triple ¢i = (pi,qi,ci) 

where is a "price," or amount of a numeraire asset; q. 
l. 

is a "quantity," 

or amount of the asset in question; and c. 
l. 

is a vector of conditions which 

apply to that order. To characterize the state of a market at time t define 

two sets B(t) and S(t) , representing the buy orders and sell orders 

respectively, which are active at t. Let R(t) be a vector of variables 

which otherwise characterize the market state at time t (e.g., the sign of 

the "tick" on the NYSE). Then the market state at time t is summarized by 

the triple M(t) = (B(t), S(t), R(t)) . 



According to the assUJllptions of the previous report, order arrivals for 

inclusion in the sets B(t) and S(t) will follow a Poisson process. To 

simplify things, we shall later assume that cancellations, withdrawals, etc. 

(which we uniformly term order "extinctions"), obey a memoryless process so 

that the markets we will consider herein will possess Markovian properties. 
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MODEL I: BENEVOLENT MARKET-MAKER, INFINITE INVENTORIES 

In this first and simplest market structure model, we shall assume that: 

(I.l) Arrivals of buy orders and sell orders are Poisson distributed in 

time, with stationary rate functions ~(p) and A8 (p) that depend 

only on price p. q is assumed equal to 1, and the condition 

vectors c are assumed null. 

(I.2) The stochastic equilibrium price is known to all market participants, 

all bids and offers are made at that price. I.e., the selection func-

tions for supply and demand are point-mass functions at the stochastic 

equilibrium price, a term defined below. 

(I.3} All exchanges are made through a single central "market-maker," 

who possesses a monopoly on all trading. No direct exchanges between 

buyers and sellers take place. 

(I.4) The central market-maker is a benevolent monopolist in the sense 

that he immediately accepts and executes all bids and offers at the 

equilibrium pr.ice. 

(1.5) The central market-maker has infinite inventories of both assets, 

which we shall call "stock" and "cash." 

(I.6) There are no transactions costs. 

By way of explanation, the stochastic equilibrium price means the following: 

The mean value functions of the stochastic demand and supply (see formula (5) 

of Part II) are here independent of t , and are in fact the rate parameters 

AB and AS (functions of price only) of the Poisson order arrival 

processes. To diagram the situation, we have: 
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Figure 1 

where * p is the stochastic equilibrium. price·, >..* is the stochastic equilibrium 

rate, assuming as usual that these "demand and supply" functions intersect. 

Clearly, there are no nontrivial price or order-queuing implications of 

Model I. Volume, i.e., the amount of stock exchanged in a given interval of 

* time, is only slightly interesting. Since at the equilibrium price p , we 

rate 2A* ~ In a time interval 

the variance is 4)i.*2T2 . 

volume is Poisson distributed with 

[t, t+T], the expected volume is thus * 2A T , 



MODEL II: THE BENEVOLENT MARKET-MAKER, FINITE INVENTORIES 

In this model we adopt the following assumptions, where the notation 11 <=<>" 

means "is identical to": 

(II.1) <=> (I'.l) (Stationary rates, g_ = 1, c null) 

(II. 2) <=> (I.2) (Equilibrium price sole price) 

(II.3} <=> (I.3) (Trading monopoly} 

(II. 4) < ,> (I.4) (Benevolence) 

(II.5) The market-maker has finite inventories IS and I of stock 
C 

and cash. 

(II.6) <=> (I.6) (No transactions costs) 
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Note that only Assumption II. 5 is different from that of Model I. Thus our 

interest lies in the affect of finite inventories. We shall term the market

maker "ruined" if either of his inventories are exhausted, since he is then 

unable to continue in his role. 

First, it is clear that ultimate ruin is a certainty for the market-maker. 

What is of interest is the time until ruin and its nature. By analyzing the 

embedded random walk of his inventories via the usual methods, we find that 

the market-maker will be ruined by a stock depletion with probability 

Ic(p*r8 + Ic)-1 or by a cash depletion with probability p*Is(p*Is + Ic)-l. 

The expected time until ruin is Isic/2A*?*. (It is interesting to apply 

this latter formula to actual exchange liquidity requirements, for example, 

the NYSE requirement that its specialists be able to take a position of 400 

shares of the securities in which they specialize. Assuming that 95% leverage 

is available, daily volume in his security is 6000 shares.(the average), and 

that the specialist participates in about 25% of these trades, we see that the 
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-maximum of this quantity is about 53 days. Even if the approximations of the 

model to the real world are poor, the order of magnitude here makes it clear 

that specialists must pursue a policy of relating their prices to their inven

tories to avoid ruin; it is not the case that they simply respond to temporary 

fluctuations in demand and supply, as the stock exchange propaganda would 

suggest. Also, we see the importance of leverage: without it, the expected 

time to ruin is about 1/2 day.) 

MODEL III: THE MONOPOLISTIC MARKET-MAKER 

' The next situation assumes the following: 

(III.1) < > (II.1) (Stationary rates, q = 1, c null) 

(III.2) All buy and sell orders are made at the prices set by the 

market-maker, PB and Ps • That is, the selection function for demand 

is point-mass at pB , that for supply is point-mass at p8 . 

(III.3) ~ (II.3) (Trading monopoly) 

{III.4) The market-maker maximizes expected profit per unit time by 

buying at one price, selling at another. 

(III.5) The market-makers' inventories are essentially infinite but 

subject to a no-drift policy condition, explained below. 

(III.6) < > (II.6) (No transactions costs.} 

Here the central market-maker takes advantage of his monopolistic·trading 

situation (III.3) to "buy low, sell high." The no-drift assumption means that 

the stochastic processes representing inventory levels must be martingales. 

Hence if pB and p8 are the prices at which the market-maker will accept 

i 

l 

I 
.I 

i 
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- -
= 

A - a, 
B 

and = y - >. 
0 the spread (see Part IV) is 

and the expected profit TI= sr per unit time. Relaxing Assumption (III.6), 

similar calculations including a transactions cost c per trade paid by the 

market-maker yield corresponding results where A above becomes 

= 
A ::;: - Boe 

A - (8 + o) • If expected profit maximization, no-drift inventory 

policy, and approximate linearity of the order rates are realistic, we see the 

following behavioral hypotheses are suggested by Model III's treatment of the 

monopolistic market-maker: (1) He will establish two prices, one for buying 

Ps, and one for selling, PB. (2) The spread can be either too low or too 

high in serving his interests, i.e., he will not use his monopolistic position 

to increase the spread beyond all limits. (3) Imposition of a transaction 

cost c on the market-maker will decrease his buying price and increase his 

selling price linearly with respect to c; volume will also fall linearly 

with respect to c. 

MODEL IV: MONOPOLISTIC MARKET-MAKER, FINITE INVENTORIES 

It is of some interest to explore the impact of initial inventory limitations 

on the monopolistic market-maker, since now he may use his profits to increase 

his inventories. To this end, we let I (t) 
s 

and I (t) be his inventories 
C 

of stock and cash at time t , and replace the assumptions of the previous 

model by: 

(IV,1) <=> (III.l) (Stationary rates, q = 1, c null) 

(IV.2) < > (III.2) (Point-mass selection functions) 

(IV.3) <=> (III. 3) (Monopoly) 

(IV.4) <-> (III. 4) (Profit maximizer) 

(IV.5) At time 0 , the central market-maker has cash and stock 
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inventories of Ic(O) and IS(O) , respectively. Subsequent negative 

inventories imply the market-makers' . "ruin, 11 i.e.·, inability to continue 

in. his role. 

(IV.6). < > (III.6) (No transacti.on costs) 

Let NB(t) and N0(t) be the numbers of bids and offers, respectively, 

executed by time t. Inventories are governed by the relationships 

I (t) 
C 

= 

and 

= 

Let ~(t) be the probability that Ic(t) = k and let ~(t) be the 

(1) 

probability that r8 (t) = k. If we assume that I (0)- is much larger than 
C 

either Ps •• and pB , then the dynamics of cash inventory can be approximately 

described by a birth and death process via the differential equations 

and (2) 

where the initial conditions are 

if k = I (0) 
C (3) 

otherwise. 

Analyzing the embedded Markov chain in this stochastic process by the usual 

methods yields the approximate ruin probabilities. 
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= (4) 

1 otherwise. 

Similarly (and this time without approximation) 

lim 
t ➔ 00 

R (t) 
0 

= (5) 

1 otherwise 

From (4) and (5), we see that to avoid the certainty of eventual ruin, the 

central market-maker must set pB and p8 so as to satisfy the simultaneous 

conditions 

and (6) 

provided this is possible. In other words, the central market-maker with 

finite inventories must tread the narrow policy path given by (6); even in 

doing so, he risks some probability, given by (4) and (5), of ruin regardless. 

The riskiness of this environment again c.ompels us to suspect that the rational 

market-maker will adjust pB and Ps depending on the state of his inventories 

in order to limit his ruin probabilities. Other hypotheses which might be 

drawm from Model III are: (a) Ceteris paribus, Equation (4) suggests that 

increasing the spread is one way of limiting the risk of cash inventory ruin. 
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(b) Assuming >..B(pB):;:: A8 (pS) , E~uation (5) suggests that changing the ratio 

AB/AS slightly will be more effective than increased initial inventory in 

protecting against stock-out ruin. 

MODEL V: THE CLEARING-HOUSE MARKET 

In this model, we dispense with the central market-maker altogether. Since, 

however, order executions cannot then necessarily occur instantly upon arrival, 

we shall -provide that all orders have a stochastic "lifetime." Specifically, 

we assume: 

(V.l) <-> (IV.1) (stationarity, q = 1, c null) 

(V. 2) All buy and sell orders are made at some known price p . (Point

mass selection functions both at p.) 

(V.3} All transactions are made by "crossing" active orders, i.e., 

matching a buy order with a sell order whenever possible. 

(V.4) All orders have memoryless (exponential) "lifetimes" during which 

they are active, i.e., available for crossing. 

(V,5) Null 

{V.6) <-> (I.6) (No transacti_ons costs) 

We shall describe the current "state" of this market by an integer from the set 

• { 2 1 0 1 2 } • th f 11 • f h' state "n" means that ... , - , - , , - , , . . . in e o owing as ion: 

n buy orders are active in the market if n > 0 and -n sell orders are 

active if n < 0. (Naturally, active bids and offers cannot simultaneously 

co-exist since there is but one price, and crossing takes place without delay. 

Thus the state description scheme given is complete.) We shall let qij 

denote the state transition intensities from state i to state j (see, e.g., 

Parzen, Stochastic Processes). Assuming that the.lifetimes of orders are 

identically expontentially distributed with rate V (the "death" rate), we 
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have the following transition intensities between states: 

{ 
t.B (p) if n ~ 0 

<\i,n+l = 
AB (p) - nv , n < 0 

{ 
A8 (p) + nV, n > 0 

<\i,n-1 = 

As(p) ' 
n $ 0 

(6} 

>..B(p) + >-s(p) + nv 
' 

n > 0 

<\i,n = AB(p) + As(p) , n = 0 

AB(p) + As(p) - nv n < 0 

After the transient behavior {which depends upon the initial state of the market) 

is gone, the probability of finding the market in a particular state is given 

by the equilibrium probabilities a as follows: 
n 

n AB(p) 
a IT 

As (p) + iv for n ~ l 
0 

i=l 

a = (7) 
n 

As (p) -n 
a IT 

AB(p) + iV for n $ -1 
0 

i=l 

where a is the equilibrium probability of finding no orders in the market. 
0 

It is of interest to find a , 
0 

related by the norming equation 

= 1 . 

and a = 
-1 
I a. 

i=-cx:> J. 
which are 

(8) 



From (7) we have 

co n AB(p) • 
a ;::: I a II 

>,. (p)+iv + 0 
n=l i=l s 

co n 1 ['B~PT I TI = a 

['~ ~p)J+i 
0 n=l i=l 

X = [ 
>,_B(p) l To simplify the calculations, let 

\) 

Then 

co n 
I n II _1_ 

a+ = a X 0 n=l i=l (y+i) 

Multiplying both sides of (9) by )( yields 

p 
n l n+y II 

ao n=l X 

co 

i=l 

and y 

1 
(y+i) 

[ 
A (p) 

s = 
\) 

from whence we see that p satisfies the differential equation 

.92.= p+a )( 
dX o 

l . 

The solution of (11) is obtained via the use of the integrating factor 

(8) 

(9) 

(10) 

(11) 

-x e 

(see, e.g., Rainville, Elementary Differential Equations, p. 41), and thus 

p = (12) 
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X t 
where f(y,x) = J tY e- dt and C is a constant of integration. 

0 

'Therefore we have 

a f(y,x) - C 
0 

i' e-x 

l4 

(13) 

Now lim a = + lim 
a f{y,x) - C 

0 

y -x X e 
= 0, since r(y,x) ~ X e -x i!-l :for · 

X -+ 0 X ➔ 0 

small X. This implies that C = 0. Therefore 

In analogous fashion, 

a = 

a r{y,x) 
0 

a r(x,y) 
0 

= 

= 

, !11.s(p) ar--
0 • V ' 

Equations (8), (14), and (15) may then be solved for 

a 
0 

= bxe-<x+y) 

xYyXe-(x+y) + yXe-Yr(y,x) + i'e-Yr(x,y) 

Example: Suppose * p = p , the equilibrium price. Then by definition 

(14) 

(15) 

(16) 
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Suppose further that · ~ = 2 , that is, the individual 

order arrival rates are each twice as large as the order extinction rate v . 

(E.g., suppose that mean time between orders is 4 minutes, with each having a 

mean lifetime of 8 minutes.) Then straightforward calculations show that 

~ .294 ao a+ 

~ .196 a_l ·- al 

~ .098 a_2 = a2 

a_3 = a3 
~ = .039 

• 

• 

• 

The expectation of the market state is 

00 

E[n] = r 
n = - 00 

= a 

n a n 

= .353 

' 

is found via applying the transition intensities (6) in the Kolmogorov 

forward equations at equilibrium., namely 

multiplying by n and summing: 

(17) 

(18) 



0 = I n {-~ a + 4n-l,n an-l + 4n+l,n an+l} n n = _00 

= I {-n4nn a + (n+l)4zi,n+l a + (n-1) 4n,n-l an} (l9) 
n n 

n = _00 

00 

= I (AB(p) - ).s(p) - nv} a n 
n = -co 

Thus we have 

E[n] = (20) 
\) 

The expected number of orders awaiting execution is E[lnl] , which by a 

similar calculation is found to be 

E[lnl] = 
\) 

Thus at stochastic equilibrium, = 

l6 

(21) 

Alllong the hypotheses that might be drawn from this model are the following: 

(a) The probability of finding no queued orders in a market is well approx

imated by the formula (16); (b) The average number of queued orders is 

inversely proportional to the order extinction rate, as per (21); and (c) 

the frequency of finding a certain number of queued orders in the market 

has the quasi-geometric distribution of (7). Appropriate real-world markets 

for testing the model would seem to be, say, dealers in commodities for 

which it is difficult or impossible to maintain dealer inventories. 



MODEL VI : THE PURE DOUBLE-AUCTION MARKET 

In this model of market structure, we allow orders to take on several prices 

(multiple-point selection functions} and introduce order priority for the 

first time. Specifically, we assume: 

(VI.l) Arrivals of buy and sell orders are Poisson distributed in time, 

depend only on the prices p1 < P2 < ••· <PK• Order quantities q 

are assumed equal to 1, and the condition vectors c assumed null. 

(VI.2) All orders are made at prices p1 , p2 , ... , pK , except that buy 

orders which are made at a price gremer than the current "ask" price, 

inf {p. l(p., q., c.) E S(t)} , are lowered to the ask price, and 
J. l J. J. 

sell orders which are made at a price les-s than the current "bid" price, 

sup {p. l(p., o., c.) E B(t)} , are raised to the bid price. 
J. J. -i J. 

(VI.3) All transactions are made by crossing active orders that agree 

on price. 

(VI. 4) <'--> (V.4) (Exponential order lifetimes) 

(VI. 5) Null 

(VI. 6) <-> (V.6) (No transactions costs) 

Our first objective will be to describe the dynamics of this 

"double-auction" market structure. We introduce the following notation: 

k "B (p j) 

" - jil "B(pj) b. -J " 
(22) 

k "s(pJ) 
µ - l As(p.) s. -

j=l J J µ 

( V will again be the order extinction rate.) 



18 

Making use of the fact that a superposition of Poisson arrivals is again 

Poisson, A • and µ represent the total arrival rates of buy and sell orders, 

respectively. bj is the probability that an incoming buy order has P.1:ice 

pj , sj the corresponding probability for sell orders. 

We describe the current state of the market as follows: for each· price, we 

tally +l for each of the buy orders at that price or -1 for each of the 

sell orders at that price. Let be the derived number associated with 

price p .. 
J 

buy 
orders 

sell 
orders 

For example, Figure 3 depicts- one possible market state for K=9: 

+4 
+3 
+2 
+ 

0 
-1 
-2 
-3 
-4 
-5 
..:.6 
.:..7 

----.------, 
1· 
I 

------, : 
• j 

- ~~- ~- - - • - - -1- - - - - - - -tp 
! I : 

P,7 Pa 
I 

j 
--------- -- ---------- ------------!-------j 

I 

--------- ------·-· ------··-· - -··-··- -;----------·-· ------
1 

- ----- -- - -------------···· ---------·• 

Figure 3 

In Figure 3, p4 is the bid price, p6 is the ask price. If the next event 

were the arrival of a buy offer at price p6 and n6 = -7, a transaction 

would occur and n6 would then have the value -6, etc. The market state 
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is thus characterized by the vector (n1 , n2 , ... , 1¾c) • 

be the probability that (n1 , n2 , ... , nK) = (i1 , i 2 , .•• ,iK) at time t and 

define 

{: if, ij ~ 0 , j=l,2, ... ,K 

y(i1,i2,•••,iK) = 
if iJ > 0 and iJ+k ~ 0 ' 

k=l ,2, .. ,K-J 

and 

{ 
K+l if i. ~ 0 , j==l,2, ... ,K 

6(i1 ,i2 , ... ,iK) = J 

J if iJ < 0 and iJ-k ~ 0 . , k=l ,2, ... ,J-1 

Put simply, y(i1 ,i2 , ... ,iK) is the index of the bid price, and 

(23) 

e(i1 ,i2 , ... ,iK) is the index of the ask price, for the market state descrip

tion (n1 ,n2 , ... ,nK) = (i1 ,i 2 , ... ,iK) , which we abbreviate as just y and 0 

We may then write the Kolmogorov backward equations of the market model: 

a P. . . (t) 
l.l 'l. 2' ••• ' 1 K . K 

------=-A-µ-\) l Ii. I P. . . (t) 
j=l J l.1' 1 2'•··,1.K 

0 
+ I\ l • { bj 

j=l 

K 

+ A(j~e bj) 

y 

+ µ( l. SJ· ) 
j=l 

(24) 
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At equilibrium, the left-hand side of (24) is zero. In theory, we can solve 

the system of equations (24) to obtain the steady-state probabilities for each 

market state. However, the practical difficulties of finding such a solution 

are considerable and we shall later turn to Monte Carlo methods for its 

approximation. 

Some qualitative observations on the double-auction market structure are in 

order. First, we note that the dynamics (24) of such a structure are 

non-simple. In particular, the embedded transactions process is intimately 

linked to the market state process, and it would not be very surprising to 

find unusual dependencies in the former that.derive from the complexities of 

the latter. (We specifically have in mind (a) the leptokurtosis observed in 

real-world price-change data, and (b) the findings of Niederhoffer and Osborne 

regarding serial dependencies in transaction-to-transaction price-change 

data.) Explorations of these dependencies will await future Monte Carlo 

studies. 




