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In this report, we explore the implications of Model VI of the preceding 

report. Model VI can be depicted a double-auction model wherein potential 

buyers compete with othe~ buyers, sellers compete with sellers, and transac­

tions occur only between those offering the best prices to the other side. 

The dynamics of the model were described by the set of partial differential 

equations (24) of the preceding report (Part III). Since these equations 

appear to be qµite difficult to analyze directly, we turn to Monte Carlo 

methods in order to gain certain qualitative and quantitative insights into 

the model. Of particular interest are characteristics of the transaction 

price and price change distributions implied by the model. 
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As in most models of its complexity, several parameters must be set in order 

to completely specify Model VI. In particular, it is necessary to set the 

ratio of order arrival rates to the order extinction rate, and the selection 

function (see formula (22), Part III). Unfortunately, we can give no 

guarantees that the parameter values used in the Monte Carlo studies reported 

below are in any way representative of values that might be determined upon 

analysis of actual market data (where such exists); the writer has simply 

tried to make these values "reasonable11 with regard to the casual data 

available to him. Hence the insights drawn below must be regarded as only 

hypotheses, not conclusions; and the most important of these will be quali­

tative in nature. 

Parameters 

Values: \) = 1 

·MONTE CARLO RUN 1 

K = 7 ; = i = s. = 1/7, 
l. 

i = 1,2, 
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••. , 7 (uniformly distributed selection function); sample size= 5000 

As in all runs, the prices pi were set equal to the integers i = 1,2, ... ,K. 

This approach does not imply much loss of generality, since (a) most of our 

results are independent of the actual scale and location of possible prices, 

and (b) trading in the organized securities exchanges is in fact done at 

prices which are equally spaced, namely, multiples of 1/8 of a dollar. 

Also, we assume that buy and sell orders arrive at the same rate (A=µ) in 

all runs. 

In this first run, order arrivals take place at a rate 10 times faster than 

the rate of order extinction (p .. +µ)/v = (5+5)/1} . The "book," i.e., the 

set of unexecuted active orders, will tend to be quite sparse since in equi­

librium orders would extinguished at approximately the same rate they arrive, 

assuming no transactions were to occur. Therefore the expected number of 

orders on the book is bounded above by 10, because transactions will in fact 

occur to delete some orders besides those that expire. 

Results 

The transaction price change frequency distribution for 4978 transactions 

(some early transactions were ignored to avoid including gross transient 

behavior) was as follows: 
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Ju. # occurrences 

-6 11 

-5 55 

-4 159 

-3 290 

-2 603 

-1 907 

0 932 

+l 927 

+2 555 

+3 312 

+4 156 

+5 61 

+6 10 

4,978 

TABLE 1 

There seems to be nothing unusual about this distribution, other than the fact 

that it is not as peaked as available market data suggest it should be (cf., 

Niederhoffer and Osborn [ , p. ]); presumably this is partially due to the 

widely spread uniform selection function. 

Of more interest is the intertransaction time distribution whose observed 

shape is described in Figure 1. 

-- -·------------~ 
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The transaction event process is embedded in the order arrival event process, 

the latter of which is specified to be Markovian in nature. Although the 

intertransaction time (time between successive transactions) distribution 

appears to be approximately exponential in its right-hand tail, it fails to 

give quite enough weight to the small intertransaction times (relative to the 

exponential distribution) as illustrated by the anomaly near the origin in 

Figure 1. We conjecture then that the intertransaction times are not 

Markovian, and offer the following explanation: When a transaction occurs, 

it can only widen the spread (the numeric difference between ask and bid 

prices) or leave it unchanged. When the spread is wider, it takes longer on 

the average for the next transaction to occur; moreover, the mere passage of 

time makes a transaction in the next instant more probable, because in the 

meanwhile untransacted orders may have accumulated to narrow the spread. If 

this explanation is accurate, we would then expect to see the non-Markovian 

anomaly near the origin appear more pronounced in situations where the book 



is sparse (e.g., for low (A+ µ)/v ratios). Conversely, intertransaction 

times should appear to be more nearly Markovian in nature when the book 

consistantly remains full. 

Parameters 

Values: A=_µ= 50; 

IDNTE CARLO RUN 2 

V = 1 , K = 7 , P = i 
i and b. = s. = 1/7 , 

l. l. 

i = 1,2, ... ,7 (uniform); sample size= 5000 transactions. 

This run differs from the first only insofar as the order arrival rates 
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(A,µ) are concerned. With the increas~ of the ratio A~µ , we would expect 

the book to be more densely packed with orders, so that the transaction price 

change distribution should be more peaked than.that of Table 1. 

Results 

As Table 2 shows, the price change distribution is in fact more peaked: 

LJ.. # occurrences 

-6 l 

-5 11 

-4 86 

-3 239 

-2 526 

-1 976 

0 1,276 

+l 1,023 

+2 506 

+3 236 

+4 82 

+5 16 

+6 0 

TABLE 2 I ; 



Also, as we conjectured, the non-Markovian anomaly in the intertransaction 

time distribution appeared to be much less pronounced. 

MONTE CARLO RUN 3 

Parameters 

Values: ~ = µ = 50; V = l ; K = 8; p. = i 
1. 

i = 1,2, ... ,8; 

(b., i = 1,2, ... ,8) = (3/57, 5/57, 7/57, 9/57, 17/57, 12/57, 3/57, 1/57); 
1 

(s., i = 1,2, ... ,8) = (1/57, 3/57, 12/57, 17/57, 9/57, 7/57, 5/57, 3/57); 
1 

sample size= 10,000 transactions. 
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In this run, more realistic selection flfnctions were contrived. The general 

idea was to make these represent closely price-competitive buyers and sellers, 

as illustrated in Figure 2: 

buy order 
selection 
function 

I 
I 
I 
I 

sell order 
/1--- selection 

function 

--------tl-------Jri--+l~---11,--t--------->~ price 
1 2 3 4 5 6 7 8 

;Figure 2 
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An effect which appeared in ·every one of the Monte Carlo runs is well illus­

trated by this particular rrm, namely, certain serial dependence phenomena in 

the transaction price change series. In order to assess the data generated 

from this model in the appropriate light, we first reproduce the empirical 

one-stage serial dependence table observed by Niederhoffer and Osborne in a 

sample of 10,536 price change observations on the first seven stocks in the 

Dow Jones Industrial Averages: 

llpt_1 (in 1/8 1 s) llpt (in l/8's) 

-3 -2 -1 0 +l +2 +3 

-3 0 0 3 9 3 4 2 

-2 1 10 32 136 61 51 1 

-1 0 35 231 1,059 777 80 3 

0 4 130 1,128 3,139 1,041 130 3 

+l 9 72 709 1,104 236 22 4 

+2 5 48 64 129 40 6 1 

+3 2 2 2 6 1 1 0 

totals 2l 297 2,l69 5,582 2,l59 294 l6 

Table 3: Empirical fre~uency table of consecutive pairs 

of price changes (from Niederhoffer and Osborne). 

totals 

21 

292 

2,185 

5,575 

2,l56 

293 

14 

10,536 

Table 3 shows the number of occurrences where a price change of llpt-l was 

followed by a succeeding price change of llpt. 

The same type of table was constructed for Model VI with the previously 

mentioned parameter settings. The results are given in Table 4: 



l:,pt-1 l:.pt totals 

-3 -2 -1 0 +l +2 +3 

-3 0 0 1 16 31 13 22 83 

-2 0 0 38 235 197 158 21 649 

-1 0 16 296 889 907 294 26 2,428 

0 14 157 952 1,384 960 160 17 3,644 

+l 25 290 897 908 288 20 1 2,429 

+2 26 167 214 190 48 0 0 645 

+3 19 19 29 20 0 0 0 87 

totals 84 649 2,427 3,642 2,431 645 87 9,965 

Table 4: Monte Carlo frequency table of consecutive pairs of 

price changes, Model VI, run 3. (Eleven observations of !:,p = ± 4 

were deleted for ease of comparison with Table 3.) 

Qualitatively speaking, Tables 3 and 4 have some remarkable similarities. A 

strong degree of negative serial correlation is present in both, i.e., there 

is a tendency toward "reversals" ( lipt-l < 0 followed by /;,pt> 0, or 
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l:.pt-l > 0 followed by l:,pt < 0) rather than "continuations" (bpt-l > 0 then 

l:.pt > 0, or L:,pt-l < 0 then l:.pt < 0 ). Where Niederhoffer and Osborne 

specificallyenote that a reversal involving 1/8 point changes is three times 

as likely as a continuation of 1/8 point changes in Table 3, the same can be 

said of Table 4. Indeed, the Monte Carlo results would seem to strongly 

support Niederhoffer and Osborne's contention that the specialist's book of 

orders is primarily responsible for the observed pattern of reversals on the 

New York Stock Exchange. (Conversely, Model VI is thus apparently the only 

--- -- --- -- ~---
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available quantitative model which successfully predicts this observed 

pattern of reversals, at least to the present writer's knowledge. But we must 

be wary here, because although the model is apparently sufficient to explain 

the first-order market dependencies, it is certainly not necessary.) 

QUESTIONS FOR FURTHER STUDY 

Although the computing resources applied in the reported three Monte Carlo 

runs were considerable, it is discouraging to note that their results seem to 

raise more g_uestions than they answer. Among these are: 

1. Simple n-th order correlatio~s or frequency tables appear to 

be simply adequate to capture the subtle, complex nature of serial 

dependency in the double-auction model. How much more inadeg_uate 

are they vis-a-vis real market data? 

2. How persistent is the serial dependence introduced by the auction 

market? Could it last over weeks or months in, say, the NYSE? Does 

the subtle nature of this dependency have something to do with the 

observed leptokurtosis of market price-change distributions? What 

effect does it have on the Central Limit Theorem arguments that are 

often advanced to justify the normal or stable-Paretian distributions 

as the limiting distributions of price changes? 

3. Can it be that intertransaction time distributions are truely 

non-Markovian in real-world markets? 

4. What are the parameter values which best make Model VI approximate 

observed data? Are there other forms of data that are much more 

relevant to identifying the parameters of auction markets than those 

forms most commonly recorded? What new measurement process are needed? 




