
'--:,-·

!

1. Expressions

1.1 Operands

l . 2 Opera tors

2. Assembly Statements

Contents

2.1 Machine instructions

2.2 Data generation statements

2.3 Symbol definition st~tements

2.4 State changing statements

I/ ,
'✓/ '

(

\

0. Format

The assembler uses an infix, algebraic language-style format. Blanks

may optionally appear between words and delimiters, and must appear between

two directly adjacent words. Statements are tenninated with a semicolon or

carriage return character. A statement may be broken across two or more

lines - an occurrence of 1 ••• ~ollowed by carriage return is equivalent

to a blank. Thus words and composite operators (such as >=) may not be

split across lines.

'
)J . r .-,4 1 . {, : . ~-•· r . ·.\

(f

' 0:. :.'\~?. 0.·'('

D and a scale factor, then-the value of the number is the value it would

have if the scale-factor were absent,multiplied by [radix ts], where

radix is 2 or 10 , for respectively a B or D integer, and s is

the base 10 value of the scale factor. A number containing a decimal
r

point ~an E represents a value in machine floating-point format. The

possibly signed scale-factor indicates the power of ten by which the rational

number before the E is multiplied.

String constants may be of any length, although when a string appears

in an expression, characters past the eighth (if any) will be truncated. The

value of a string is a series of 7 bit bytes (each representing a character

coded in internal ASCII). When used in expressions, the bytes will normally

be right-adjusted in a word, with the unused high order positions containing

zeros. However, a string constant followed by an L forces the bytes to

be positioned against the left, high-order end of the word.

l. 1.2. Symbols sy~bul :: = { 4 , 1_ \Lflsr [f\e11cr\ J,sd\•" l •• • j
l . l . 3. Counters a. Yy~bJ. <J

1.1.3.1. Syntax

origin-counter::=*~

location-counter::= *[L]

position-counter::= *P

counter::= origin-counter Zoaation-co~nter I position-counter

1.1.3.2. Semantics

?

The assembler maintains three counters, which determine the current place

in the object program being created. The origin counter specifies at what

address instructions and data are to be loaded into the computer's memory.

Whenever a complete word of the object program is formed, the origin counter

is incremented by one. Several statements described in section 2.4 also
;

~ affect its value, which must lie in the interval 0.::.. *~ .::..~77777B

Representing the number of bits remaining in the current word being

assembled in which data or instructions may be placed, the position counter

always has a value in the range 60 ~ *P ~ l . Thus before each of the

instructions of a word containing four 15-bit instructions, *P would

have the values 60, 45, ~0 , and 15.

The location counter normally has the same value as the origin counter,

since it is also incremented by l whenever a word of the object program

is completed. However, use of the statements in section 2.4 can make these

counters differ. Since labels on assembly statements are defined by the

assembler with the current value of the location counter (cf. section 2),

the ability to control the location counter facilitates writing programs

which will be loaded at one point (governed by the origin counter) but are

ultimately to execute at another point (dictated by the location counter).

Values of the location counter must fall in the interval 0 < *L < 377777B

l .2. Operators of assembly expressions

1.2. l. Syntax

primary : : = primitive { + I -} primary I ~ expr]

factor : := primary primary t factor

term : := factor I term {*I/ I ~} factor

sum::= term I sum{+ I -} term

relation : := sum [{ < I <= I = I # I (Sf 3} sum]

negation::= relation I ? negation

i/~:i;;Jft~ : := negation I -di~j~no-t~~n & negation

to;'oL~!ct¥~;r : := ~c;ii;n I ·~1~~ju~1Mm { ! I ?} tlisjunation

i~~~:z. : := J~~~~ I = ~
ccqr : :== H teJ1at r H te111t \ expr, -

1.2.2. Examples

Primaries:
1859

APPLE
*~
-0
[['X' & 17B] t [2 * 14]]

Factors:
'01234567'L
RADIX t SCALE

Tenns:
INTEGER* RADIX t SCALE
[EXTERNAL + 140B] ~ 200B

Sum:
TABLE+ 2 *INDEX+ 1

Relations:
--SYMBOL
COUNT< 15

-------~--- ----------- ------------ ---- ---

Negation:

??UNNORMALIZEDBOOLEAN

· 1 ~.i)uncti o~;
0 <= * & * < 2 t 17 - l

_G_oniuncti on:
l ! l OB ! l B6 ! l B9 ? 3. 14159

-~[=~rs;
A * B

= 1.0

~_.e_k,►PlASTERISK-PlBASE

-&.p.¥'8i:SiaQS:

C~\~ .. :~ I!YTES.IZE~\) [H > OJ * X + [H <= OJ * y

~. ~~ .N_*. ITEMSIZE + HEADERLENGTH

1.2a. Semantics

Expressions are evaluated by associating with each primary its value,

then combining these values in the or.der specified by the syntax. In par

ticular, a subexpression enclosed by square brackets will be fully evaluated

before the evaluation of the expression within which it occurs is completed.

- The syntax of section l .2.1. indicates that the following rules of precedence

control the order of evaluation:

highest: unary+ and -

t

*, /, and ·~

+ and -

<, <=, =, #,>=,and >

unary ?

! and?

,:-.,,.unary =

lowest:J I~~ -

~- ~~ -- ------ ----~~

Operators with the same precedence are usually applied from left,to right,

except for the unary operators and the bi nary operators t and f\) , which
o.,,.,J._ ~ \-.j

are applied from right to left. All operators but \ produce a result

whose Zength attribute is 60 ,. whi-ie lhe result of the \ operator has

a length attribute which is the value of the left operand, 1The length
/

attribute is of interest in the expression lists of DATA statements and

symbol assignment statements {cf. sections 2.2.3. and 2.3.3.). Operators

may be classified as arithmetic, relational, boolean, or miscellaneous.
' l .2.i.1. Arithmetic operators

_,\\

These operators, including +, -, *,/,\\,and +, and representing

addition, subtraction, multiplication, division, remaindering, and exponen

tiation, treat their operands as signed integers. If a division produces

a remainder, then the magnitude of the result will be truncated to the nearest

smaller integer. The value of A \\B is defined in terms of division; it

is A-A/B*B . The left operand of an exponentiation is the base, and the

right operand is the exponent. Thus (32) 2t3t2 has the value 2 , or 512,

while the value of [2t3]t2 is (2 3) 2 or 64 . The value of AtB is given

by the following rules:

If B > 0 then A*A*···*A (B times)

else if B = 0 then if Ar O then l

else error

else if Ar O then 0

else error
~

1.2;~.2. Relational operators

The relational operators <, <=, =, #,>=,and>, where the '#' re

presents "not equa 111 and the composite operators '<= 1 and '>=' represent

/\- re 1 ~ ,set •er (~JJ Lg~ ,~ rf t~i ~1 -~~ -

do-sh-., { : : = D© • S- re'J [- sei c, 1' ~J [BY (i:.:.~11 J \),J fl\ LE. cc1od J t 'f.-•<t~ ..

, f-~ ·h-v,t: ~ ·. -::..

6a.l -s t-i,J : ~ =

' J •• -(OV\..O.., • • ._.

x-,e7 t"- ,~-l"ot"~L llY l ~~i;\] .
[s~t 9 ••] END0

tt-cJa.u!.e s+m-l \ rf-d"-u~t bl-s-\:~t ELS£ sl~t

U\f\COltJ --sb1v .. 't (ifc\avY ba..l•sth:t t:::1. .. .S f k>d-•tt~+

\ F (., tl "'- J, 11-l E·N

X-,~1 ~ :: \ 11 \ '7 = l c f o

() f = ' t1 \ < ~ \ > 1 x-~e')
I -,

11 ~ l C!J R \ D F ! I \) f X -re1

B-se5 f :=. l # i,, "' l <'. I ,(~ I .., f f 13-«j I O 1
f) 1 ::) # \) =) < \ (-= \ /} 13 -re1

~ 13-ffJJ t \(
r A-r~) 1
l '(- r~

rC {~~::; IJ
[t- re1)

')(-res L~-u-res) / 1)-<Ps +t-ce1

~A--<,_;\ 13-«\ J [± ~-rey] \

- B-re1 ~ { ~"l \ ;-res 1 J

/R ~ FIN 1,£.·

0R !!!. 1tJF11J1"f"G

rx;-£ De'.FIN
\ D2. JNJ;;(::f:::

"less than or equal" and "greater than or equal" , take arithmetic operands

and return the 60 bit strings 000···01 and 000···00 , according to whether

the indicated relation is true or false, respectively.
J,

1 .2.Z.3. Boolean Operators -

In this group is the unary operator '?' and the binary operators '&',

'!', and '?' . Unary '?' is the negation operator, mapping +O to l , and

all other operands to +O . By the definition of section 1.2.2.2., it maps

false to true and "not-false" to false, since its domain is larger than its range.

The three binary operators '&', '!', and 1 ? 1 , denoting AND, inclusive

~R, and exclusive ~R, treat their operands as bit strings of length 60. Each

bit of the result is computed from the corresponding bits of the operands with

the particular boolean function.

The 60-bit ones-complement of a number is obtained by the unary 1 - 1 operator,

-while the unary 1 ? 1 negation operator is used with truth values. ??X "nor

malizes" X , that is its value will be only O or l , so that boolean

expressions, particularly those using 1 &1 , will produce the desired value.
?·,

-·-1"" 1.2.~.4. Miscellaneous Operators

The value returned by the literal operator, unary = , is the address of

a word containing the value of the expression which is the operand of the literal

operator. A pool of literals is maintained by the assembler in a use-block

named LITERALS (cf. section 2.4.3.). Each use of the literal operator causes

an entry to be added to the pool if none existed with a value equal to the operand

expression. The value of a literal expression is the address in the literal

pool of the word containing the expression, and is always forward defined since

the start of the LITERALS block is unknown until the end of assembly.

In order to facilitate packing information in DATA and symbol assignment

statements (cf. sections 2.2.3. and 2.3.3.), the length operator "' is pro

vided. It produces a result whose value is the right operand and whose length

attribute is the left operand. Thus the expression A\B implies that the

value of B will fit in a field A bits long. A and B must satisfy the

relation A> FLOOR(LOG2(ABS(B))).

q

-/ ,,

2. Assembly Statements

assembly-stmt ::= [Zabel-part] {maahine-instr I data-stmt

symbol-asgn-stmt I misa-stmt}

Zabel-part ::= {symbol:} •· · I {+ I -}:
The statements described in this section are directly related to the

fundamental assembly process. They generate machine instructions and data

words in the binary output file, define symbols with values which may be

used in expressions, and change the internal state of the assembler, thus

governing the effect of subsequent statements.

In addition to the three counters described in section 1.1.3.2., part

of the status maintained by the assembler is the fora~ upper flag, which

takes part in determining whether the next information to be assembled will

start left adjusted in a new word. This flag is a 11trit 11 , having one of the

three values false, don't aare, or true . Each machine instruction and data

generating statement leaves the flag in the true or don't care state.

After processing the label-part, which may affect the force upper flag, the

assembler forces upper if the force upper flag is true . Forcing upper is

equivalent to executing the following assembly statement (cf. section 2.2.3.):

DATA *P~l5 ". 0~[*P=45]*15 \ 460008~ ...

) ~" [*P=30]*15 \ 46000B;[*P=15]*l5 \ 460008

The effect is to fill out the current word with no-op instructions (unless

*P already equals 60) after filling out to the nearest quarter-word boundary

with zero-bits, if *P modulo 15 is not already 0. Certain machine in

structions will automatically be forced upper even if the flag is set to

don't care (cf. section 2.1.2.). If the force upper flag is false, the

assembler will force upper only if the item to be assembled will not fit in

the current word.

Any assembly statement may contain a label-part, which will result in

the following actions taking place before the statement itself is executed.
f\J,S

If the label-part consists of a ;±" or a minus followed by a colon, then

the force flag will be set to true or false respectively, regardless of
fl

how the flag was previously set. If the label-part consists of a sequence
;J_/' ..

of symbo 1 s each fo 11 owed by a col on, <lliJii ,!J_l"sttthe_a-ssemb l er forces upper.

Then each of the symbols, called labels in this context, is defined with
C

,r-<,.:,

the current va 1 ue of the location counter. For each symbol L.\ of the 1 abe 1-,)
'---/

part, the effect is as if the following statement were executed (cf. section

2.3.3.):

I l

------------------------- ---- -

2.1. Machine Instructions

2. l • l • Syntax

(
\

maahine-instruation ::=

/

PS [exp1']

RJ expr

J RE I ;, }
WEr·)B-reg [{+ I -} exp!']

) XJ) exp1' [+ B-reg]
JP .

IF

A

X-1'eg { = I # I >= I <} 0 1
0 { = I II I <= >} X-reg
{INRANGE OUTRANGE I DEFINITE I INDEFINITE} X-1'eg GOTO exp1'
B-1'eg {= # I >= I< I <= I >} {B-reg IO} ·
0 { = I # <= I > >= I <} B-1'eg I

.J

[-] X-re
0
(LCY
j RC
, RS
I Ml\SV

,";;. j

[B-reg]

------~ Jp,

expr

Let
RS~
NORM
RNORM
UNPACK
PACK

?} X-reg]

X-reg

X-reg {{+. I -. + •• I -.. I .+. I .-. I + I - I
I /. I ./.} X-reg *. I . *. I *

COUNT X-re[_____ . -----,

\ -~

[+] {~=~=:t · ~+ I -} expr
X-reg:

~

{
A-reg I
B-reg \+

l X-reg j
{

A-reg} e:x:pr [+ B-reg]
X-reg

2.1.2.

[+] X-reg [+ B-reg]

[+] B-reg + {X-reg I A-reg}

[+] {A-reg I B-reg} [{+ I -} B-reg]

- B-reg [+{A-regj B-reg}]

~------
------Examples

RJ GETNEXTCHARACTER

JP B6+STATETABLE-l

IF Xl=O G0T0 ERR0R

X2 = -XO&X2

X4 = UNPACK X4

X7 = X7 + X7

A7 +-Bl+ A7

X6 + [CHAR+ l 4OB]~ 2OOB

-~-

I
i

2.1.2. Semantics

Each machine instruction statement results in generating a 15- or 3O

bit machine instruction, possibly preceded by an N0 instruction (in the case

of a 3O-bit instruction with only 15 bits remaining in the current word.}

But first, the assembler assures that the instruction will be aligned on a

quarter-word boundary, padding with zero-bits if necessary. The effect is as

if the following statement were executed {cf. section 2.2.3.}:

/)

DATA [*P~l 5]\0

The JP , RJ , PS, XJ , and IF Bi=Bi instructions set the force

flag to true which will cause the next instruction to be forced upper

unless it is labeled by 1 - 1 • The instructions PS , RE , WE , and XJ

are forced upper automatically unless they are labeled with 1 - 1 (cf.

section 2.).

The syntax allows several notations for some machine instructions.

For example

A6 + -Bl+A6 and

A6 + A6-Bl

are equi':·)lent. Two 11 new 11 instructions are provided,

J RCYCLE.l ... •··· .. f_
X-reg = \ > exp~iy)

LHOLE J

They are treated as if they were written:
,. \ ! LCYCLE -~---X-reg = ,1 60 - [exprbssi.gnJ
\ MASK) c_ ..
\.

Most machine instructions should be self-explanatory, but several

deserve some attention. Wherever an option containing a B-register is o

mitted, the assembler supplies BO . The IF series generate X register

jump instructions and B register comparison-jump instructions. Note that

only certain relations between an X register and O are allowed. Where
o)< ' \

a O is supplied in a comparison with a¥eg{~er'! BO is assembled. The
. 4,·

statements of the form X-reg = [-] X-reg [{& I ! I ?}] X-reg generate
,J

boolean instructions, with the leading 1 - 1 signifying complementation: and

the binary 1&1 , 1 ! 1 , and 1 ? 1 indicating respectively the AND, inclusive

0R, and exclusive 0R functions. In statements of the form X-reg = X-reg

------#~, arith-op X-reg, arith-nn 1s with a single trailing dot are floating, with
V/ ~

11

two trailing dots are double, with preceding and following dots are rounded.

X-reg = X-reg {+ I -} X-reg generate integer add and substract instructions.

2.2.

2.2.l.

Data Generating Statements

Syntax r·
'-'

1 >-/
data-stint : := DATA expr-Ust{~ I {STRING I LINE} string/; · ·

,J •. ___,

expr-Ust : := {, • expr • • •}

2.2.2. Examples

TENS:DATA lEO, lEl, 1E2, 1E3, 10000.0
\~__JbTRCFLG, N\TYPE, 60-[N+l]\VALUE

ERRMES,.: LINE I ERROR IN RULE AB0VE. 1

:,

2.2.3. Semantics

Statements which generate data words are of two types: those whose

operand is an expression (and thus is limited to at most 60 bits in length),

and those which take an indefinite-length, string operand.

The DATA statement places a series of expressions into successive ma

chine words, packing short items from left to right wherever possible. When

ever an expression is encountered whose value is 11longer 11 than the amount

<7 of space in the current word being assembled, then the offending expression
7) ~}

>/ is forced upper. Si nee only expressions of the form 6xpN. ~p_r have a length
~~ ~t'.!A - ---

attribute other than 60, the DATA statement usually creates a series of

words each containing a single expression.

In order to generate a text coded in internal ASCII, and possibly in ·

System Standard Text format, the STRING and LINE statements may be used.

The operand for each is a string. Both generate enough words to hold the

string, eight 7-bit characters per word (with the extra 4 bits in each word~~
>. • •• - • --· , .•• - .,.,

normally containing zero-bits,in the high-order position), and both pad out
~.. . ~

unused positions in the last word with blanks (=00) •

j

However, LINE additionally sets the first 4 bits of the first word to

11B , the SYSTEXT beginning-of-line flag, and inserts a carriage-return

character (=155B) at the end of the given string.

I</

--------------------------- ---. --------

2.3. Symbol Definition Statements

2.3.l. Syntax
,/,.-- -- -

symbol-asgn-stmt ::= symbol {+ I =} rexpr-Ust')
-~ ___ /

2.3.2. Examples

TRCFLG = l
'.) j. ~

NUMBER~FTEMPS + NUMBER~FTEMPS + l

X~RMASK = 4\0,2*7\0,7\ 1 • 1 ? 1 ; 1 , 2*7\0,7\'.'?':'

HERE: HIER+*

2.3.3. Semantics

A symbol assignment statement is used to furnish a value which may be

referenced when the symbol appears in an expression. When the 1+1 operator

is used to assign a value, the symbol may be reassigned different values (but

only with the 1+1 operator). The symbol keeps only its last assigned value.

Permanent definition results when the 1 = 1 operator is used. The symbol

may never be redefined with either operator.

The expression list which occurs in a symbol assignment is used to create

a 60-bit value in much the same mammer as if it were used in a DATA statement.

This is, the values of the elements of the list are concatenated together.

However, the sum of the length attributes must be ~ 60 , and if it is less,

the value will be padded on the right with zero-bits. The expressions must

not contain references to forward-defined symbols, that is symbols which are

defined as labels or through

ferenced.

'=' assignments ~fter the symbols are re-

1 er-.

('

2.4. State Changing Statements

2. 4 . 1 . Syn tax

misa-stmt ::= use-stmt I positioning-stmt I reservation-stmt

use-stmt ::= USE {use-bZoak-name I }
positioning-stmt ::= {ORG LOC} expP

reservation-stmt ::= {BSS BSSZ} expP

2.4.2. Examples

END0F0LDBL0CK: USE NEWBL0CK

USE*

0RG 0

INFILE: BSS DSCR,EN+BUFFLEN

2.4.3. Semantics

The assembly process consists of two phases. First the source statements

are scanned and a skeletal version of the object program is formed consisting

of one or more sections called use-bZoaks. which are to be concatenated to-
tiMt

gether at load~- The order of the sections in the final object program

is determined by the source program, but since the length of each is not known

unti1{;hase two, the values of relocatable symbols in all but the first use

block are not known until phase two.

Thus phase two serves to provide absolute values for symbols which were

referenced prior to their definition, albeit partial. This second phase is

actually performed by the loader, leaving the assembler proper only the task

of producing an ordered sequence of use-blocks, as well as a symbol table

and other information for the debugger.

At any moment, the origin, location, and position counters and the force

upper flag define the assembler's position and status within the current use-

block. The statements described in this section serve to alter, save, and

restore these indicators, determine the sequencing in the object program of

the use-blocks, and reserve and initialize data areas. Because the assembler

uses only one phase, no forward references may appear in the expressions

contained in;the statements described in this section.

The USE statements with a use-block name as an operand has several

effects. The current origin, location, and position counters and force upper

flag are set from the values associated with the specified use-block name in

the use-block order list (they are 0, 0, 60, and don't care initially).

The old values are placed in the use-block order list entry for the previous

use-block-name, after making a new entry at the end of the list if none

existed. Finally an entry is pushed on the use-block push-down list for

the old use-block name.

When a USE statement with an 1* 1 operand is executed, the effect is

to pop an entry from the use-block push-down list and reinstate the counters

and flag from the corresponding use-block order list entry. However, if

the push-down list is empty, a USE* statement has no effect.

The positioning statements 0RG and L0C are used to alter the contents

of the origin and location counters. Thus L0C ~ sets the location counter

to the value of the expression and forces upper. 0RG ~ causes the current

origin and location counters to be set to the value of the expression, the

position counter to be set to 60, and the current use-block name to be set

to the use-block designated by the value of the expression (see relocatable -~c symbols). As with USE, the old counters and flag are saved and the old use

, block-name is pushed down.

-·

The reservation statement BSS expr forces upper and then increments
~

the origin and location counters by the value of the expression, BSSZ expr
~

functions similarly except that the reserved area is preset to zeros when

the program is loaded.

