
Languages and Processors: B~SIC

nay 1971

Int roduct!on

The BASIC langqag~ is described in de~~il in a primer by Don~l1 n.
Spencer, A~Guide __ to EAS!C _Pro~mming: ___ A_TimP.-Sharing_Lnnguage.,
published by Addi sion-Wesley, 1 q7 O. 1'h.e purpose of the d ocn men t "'h ich
follows is to in1icate where the TS~ implementation of BASIC differs
from the lang•Ia<Je ~esc,:-ibej by S r,encer as well as to provide a brief
description of the language for those who are familiar with other
programming lanquaqes. !t also rycovidPs details of how the interaction
between the nser and 1:.h~ syst0ru works.

Languaqes and Processors: ~ASIC

f'llay 1971

CRAPTER_1_-_BASIC_STATEMENTS

BASIC accepts three types of stateme~ts. The first type, called a
direct statement, is executed immediately and most standard statements
can be of this type. With a direct statem~nt a value can he printe~
out or a variable changed. Some statements onlv make sense whPn
executed diL~ctly, e.q., the statem~nt which starts execution.

The second type of statement, called ~n indirect statement, is savPd in
a program to be ex~cuted later. Indirect statements are savei in 1

text file by usinq the third type of statement, staniard Rditor
requests. (See 2.2 Rditor under PART THREE The CAL Tirn~-Sharinq
System.) All of the editing requests nf the t~xt e1itor can b~ use~ to
create and edit d file of indirect requests to be executed when th~
program is run.

Every indirect statement must start with a line number. When th0
program is run, the lines are executed in or1er of line number
regardless of theic order ia the text file. Therefore it is d~visable
to number lines by 10's in order tc leave room for lines which miqh~
have to be a1de1 while debugging. Although the lines may he in any
order, it is less confusing if they are kept in oraer. J+- is also
convenient to keep debugging statements at the bottom of the filP.

If a prog.ra1'1 is not in ur<ler and/or the line nnmbers ht1Vf' uneven qaps
between thAm, the program can be cleaned up hy calliny the subsystem
RF.NUM. {See Section 1. 3 below.)

The following is a brief description of the statements which the BASIC
on the CAL TSS acc~pts. In the following descriptions square bC'acketsl
indicate items which are optional. If the first bC'ack~t is followed by
three dots, then any nu111bec of the items in brackets is allowe·i. C!IL
TSS BASIC accepts some statements and capabilities which are not in thn
BASIC described in ~- Guide to __ BASIC Programmina: __ A Time-ShaC'in1
&anguage by Donald o. Spencer. rn the descriptions which follow,
these features are indicated by a footnote. A few featut'es ~escribe4
by Spencer are not in this BASIC and ace listed in Section 3.1. 3 below.
Unless otherwise noted, a statement has no effect if there is an error
during its execution.

LangudqE>s ani nrocessors: '.3ASIC'

r.ay 1971

ls..hl_Q~_!~g.t ion_fil~!~.Ml!Lt~

RE~ ~.J!Y_£!s£~£ter_§.tring

Remark. This is a comment anrt has no action when execute1.

Example: REM THIS IS A co~~ENT

DlTA ~l~ (... ,yaln£1

When executed this statement has no effect. All th~ aata
statements in a program form a data bank of values for +h0 READ
statefflents to use. ~he values must be numerical constants or
string const.ants. Steiner constar.ts do not n8eC, to hav,::, q11ote:,
around them if they start with a letter and contain only lett~rs
and digits.

Examples: TIAT~ 1r,20,6.3E+52 - 3 numerical values.

DA~~ "~IN0~:+10",-10,TEN,+10 - A string, a numbe~, 1

strinq, and a number.

DUI ~Il.!!.I_.!!!!.!!~ (di11i!nsion list) f ••• ,arrgy_name (dimension_list) l

The DY~ statement reserves space for an array. If there was an
array with the same name, it is deleted and a new array is
reserved without any dat3 in it. Tbe dimension list is onn or
more expressions separated by commas.• If the value of th~I
expression is not an integer, it is truncated to the next smallest
int9ger. Any number of dimensions are allowed. If therA is onlv
one dimension, it is called a list and the in~ex can qo from zero
to the value of the expression. Tf there is more than on~'
dimen~ion, the indices go from one to the value of the expression.
Str.inq arrays (those with a $ in the name) can only have on"'
dimension. If the total amount of space to be reserved is qre~ter
than 5000, an error occurs.

A one or two dimPnsional array can be referenced without a nr¥
statement explicitly dimensioninq it. If this is ~one, the arr~v
is dimensione~ to be of si7.e 10 CL 10 by 10.

Examples: DJ!IJ 1\(nO), Rii(11), C(5,N,3*N) I
A is dimensioned to be a 61 el,?.ment 11.st with 1.nl'licer;
fr:ona O to 60. BS is a 12 element list_ ot strings. c

t Here Spencer restricts you t.o canst.ants ani onP or two <'iimPnsions.

Lanquaqes an~ Processors: n~srr

May 1971

becomes a 3 ~imensional array whose size i~penJs on
the value of N when the DIM statement is execute~.

nI!'l B(I,J,I*J,2)
B becomes a four aimensional array whose indic0s c'ln
range fro• 1 to t~P v~lue of the expressions qiv0n.

The number of significant digits to be printed for a number is
changed to the value of thP. ~.Ef~§.§.!Qil• Th? value must be betw\~en
1 and 13. The default value is 1. When numbers are printPd they
are rouniled to this manv digits.

Example: SIG N

Pl USE (strin.g:] 2

END

S'l'OP

Execution p~uses for debuqging. When this statement is PXecuted,
2 ging is pt'inted if it exists, otherwise a message indicating th,:.~
next line to be executer! appears. Ouring the pause, B.l'\SIC can
accept direct statements and/or editing requests, ,ifter which
execution can be resumed by tyring CONTINO~.

"Examples: P'10SF;
PAOSF "WE SHOULDN'~ BE HERE"

The last line in every program must be an END statement.
execute~, it stops execution.

This statement stops execution 0f the program; it acts li~e a jumn
to the END statement.

When executed this statement defines a one line f11nction with onn
parameter. Thg dummy parameter userl in defining the function is
not affected when the function is called.

z Not mentioned in Spenc~r.

Lanquaqes and Processors: BASJC

!lay 1971

Example: DEF pijG(Xl) : Xl/10 - ~0/X3

After this statement is executed FNG(ex£ression) can
be used as a sub·-expres~ion in any 9xpression. For
exa•ple one could write:

L~T A (FNG (N .. 2) +1) = P'NG(2*A3)

This would execute exactly as if one had written

!.~T A((l'i+2)/10 -~O/(tH2} + 1} :: (2*A3)/10 - A0/(2*A3)

Note that X1 is only a dummy pardmeter an~ is not
affec~ed, and that the value use1 for AO is ~qual to
the value AO has when the function is called, not when
it is defined.

Values from the data bank fot:rn~d by DAT/\ stat8ments dre store,~
into the variables. If there is an error when this statem~nt is
executed, the variables before the one with the error in it ar~
altered, hut the data bank pointer is not moved so that th~ line
can be re-executed.

Rxampla: READ F$,C,G2
Read a string and 2 numbers from the data hank.

INPUT reads values typed by the user at the teletyp~. When
executed it types a quqstion mark and expects the person at th0
teletype to tvpe values which are a. pp ropria t,?. 1 f the PB r- son
mak~s ~ ~ist~ke, such as tvpinq too many Vdlues or t.vping a strinq
instead of a n~mber, he is.told about his mistake and that Lin0 is
ignored. If he does not type enough values, th~ first on~s nre
accepted and a question mark is typed asking for more valu~s. Tt
is best for the proqcam to h:\ve a PRINT statement to tell the usPr
what valqe to input.

Example: INPUT A,a,A$(Nl I
The 11ser should type t we numhers ana a strinq (separated
by commas) when this is executeil. The line to be tyPe'l
can be anything that would be leqal after a DATA
statement, i.e., numhers and strings separated hy
ccmmas.

Languages and Pro~essors: BASJC

Kay 1971

PRI RT [•• • .!i~l!!]

PRIN~ outputs characters on the teletype. Each item specifi 0 s
what is to be pricted. In addition to the items listed below, a
carriage return will be 1one at the eni of a line unless th~ l3st
item was a comma, semi-colon, or colon. A carriage return is also
done if a line exceeds 72 characters. ~he following tahle
describPs the allowable items in a print statement.

lli! g£ti2!!
numerical eie£~§2AQ~

sy:il!g_variable

,

The ~~pression is evaluated and then
rounded to the appropriate number of
digits (see> SIG request above). Tfl
the number is negative, a minus siqn
is printed. If it is positive, ,1

blank is typed. Then the numerical
value of the number is printe~ in 1

format that seems best.

The contents of the string variable
{either simple OC' subscriptert) 1.r~
pr ir. ted.

'!"he £ha£.2.£!££§ enclose1 in guotPs
will be printed. Thi?.re may be any
number of characters. The onlv
character not allowe~ in the strinn
is a aouble quota..

The ex£cPssion is evaluat~d ~n~

truncated to an integer. ThPn
blanks are typed until the teletyp0

i~ positioned to type the DPXt
character in the column specitiea hy
the inteqer. There is an ecror if
tbe result is not between ono. and
seventy-two. It the teletype head
is beyond the column sprc>citit?d by
the expression, a carriage return is
!)erformed, then blanks are typer!
un~1l the head is in the prop0c
column.

Planks are printed until the begin
ning of the next 14 character zon0
is reached. This is the most common
and easiest way of getting numbers
to line up correctly. From one to
14 blanks will be printei.

n

Languages and Processors: n~src

fllay 1971

.
•
. .

Examples:

Two blanks are printen •

~ colon3 does not cause anythinq to
be printed, but it is useful as ~
separator to print such things ~s
the concatenation of two strina
variables, or to end a lin," without
any blanks and without .'! carr i,HJP
return.

PRINT does a carriage return.

PRINT A$,B1.'l'AN(B1*B1) prints thE· string in A$; moves to thE:~ next I
print zone; prints the value in 81; ~oves to the nPxt print
zone; prints the tangent of the value in B1 squarer1: and ends
with a carr:iage ceturn.

PRINT "RESULTS PFINTED IN A TIGHT PORMAT":A1;2*A2;3*A3 prints th~I
message immediately followea by the three values separatea hy
? blanks, and terminated by a carriaoe return.

PRI N,. 'J' l. B (N) : ?l
providing
positive,
sign of N

prints the value of
N is between 1 ar.d
column N wilJ be

is positive.

N startinq in the N-th column -I
72. Note that sincP N ir.:;

left blank to indicate that th0

PRINT "INPUT COUN'T'": prints the message TNPu·r COUN'l' and thE'rq
leaves the teletype whee~ it stops. If the next statement
were an !NPU~ comman1, it wonld type a question mark ~iqht
a ft.er CO'JN'!'.

PRINT A "=" B prints the contents of, followed by= im~ediat0lyl
followed by the value in B.

PRINT A er ,J); prints elements 1, .. 1 in matr:ix I\ followe(l by t-..·oj
blanks but no carriage return.

RESTORE

When executed this statement restores the pointer into the dat~
bank to the top so that thA bank is in the same state ~s it was
wh~n execution started.

3 Not mentioned in 5pencer.

7

Languages and Processors: RASIC

!!ay 1971

This statement transfers control ~o the designated line.

OH ex,er~siQ.!l GOTO line_number f ••• , 1 ine_num bee J

The value of ~!£r~~2 i.Q.!! desiqnates which line is to bE> execute,1
next. If the value is 1, execnti~n jumps to the line with thn
first line numb~r. If the value is 2, the second line numb~r is
used, etc. ?h~ expression is ~valuate~ and truncate1 to an
in teJer-. T.he result m 11st be bet ween one and th.e num hPr ot 1 inc,
numhers given. This statement can be used to start or restart
execution when usel as a direct command.

ExamplP.: ON ~/10 GOTO 10,25,50,65 divides A by ten,
truncates to an integ@c, which must be between
4. If the r@sult is 1, execution will resume at
10. If it is 2, execution will contin,ie at line
an1 so forth for. 3 ~n~ 4.

IP logtcat.~~Ecessign ~HE~ line numh~!
IF !.Qgica 1 ex 2Dl§SiQ!! GO'l'() li!!~-.!!J.!!.b€!;

then I
a n::i

1 i IlP

2 5,

These requests "r~ i ntercha ngf?a ble. The 129:ica l_e lC,Et:'e ssion is
evaltt~t~d to t-? either true OC' false. If it is true, th~n
executioP jumps to tb0 line wit.h the given lin!L_.!E!.filb~!:; othE>rwise,
it falls through to the o~~t line. When used as a ~irect
statement, execution ro?sumes at the in dica. t.ed line if the exPr 0 s
sion is tcne; o~h~rwise nothing happens.

Exam pl~s: TF A,<' A & 1,$(N)><"ONE11 GO TO 65 jumps to line 6~ ifl
the value in! is less than the value in Band the Nth
strino in list A$ is not equal to the strinq "ON~".

IF NOT (i < 8 ! C >= D) THEN 70
Tf it is not• the caBe that either~ is less ~han B o~I
c is greater than oc equal ton, then jump to lin~ 70.

FOR ili.£l!L,llriab!~ = ~ll!:~~§!.Q!l TC' .~.!.EI~22iasrn [ST~P ex_eression]
NEXT sim£le variable

The FOR and NEXT statemerts go together to generate loops. Wh0n
the FOR statement is executed the three expressions are evalH:3.tP~

• The operators NO~,~. and
by Spencf>r.

are rot allowed in the BASIC 1P3crihP~

Langnaqes and Processors: B~.SIC

May 1CJ71

first. If thA STtP expression is missing, its value is assumed t0
be one. Then the simple variable is given th~ value of the first
expression and the other two are saved for incrementinn an~
terminating the loop. If the value of thP simple varin.hlP i~;
greater than the second expression (less than if the step value is
negative), the loop is not executed at all. Otherwise thn loop is
executed d OW1' to the NEXT statement. The NFXT st atPmen t a 1,-is t hP
step value to the simple variable (which must match the sjmpla
variable in the corresponding Pn~ statement), and re-executes th0
loop unless the variable is q~eater (less if st~p negative) than
the TO expression. When the loop terminates, the simple variabl~
retains the value it had durin1 the last iteration ot the loop.
Note that the value of the simple variable can be changed in thG
loop but not the step or terminating value. FOR loops can be
neste~ but th~ simrla variables on paired NEXT and FOR stat~mnnts
must match.

Examples: FOR I= -2 TO 2 STEP N/10 I
I is set to -2 and the value of N/10 is saved for
.increment. inq.

FO~ J = ! TO N-J I
J is set to the v~lue of I and incremented hy 1 until it
has a v~lue greater than N-3.

NEX'l' J
When executed, it adds 1 to J and then tests foe
value io J being ~reater than N-3 was when the loop
en tererl.

wa3

J'RXT I I
When axecuted, it ad~s t~e valu~ which N/10 had to I anJ
loops if I is l~ss thdn or equal to 2.

FORK= -1 TO +1 STE? -1
~11.X'"t' K

This loop will not eX·'!ClJte even once sine~ K is
less than +1, hut K vill be given the value -1.

GO saa acts lite
next linP. so that a
exec~tad 1irActly
exer.ution.

a GO~O except tbat it sav~s the address of th~
RF.TU~ N can iJ o to t hat l in e. It can h <=>

in which cas~ the rPturn statement stops

RETURN

Languagr.>s <1n1 Processors: BJ\. c;rc

11ay 1971

Execution qoes to the line ~fter the last GO SUR for which ~
RETUqN has not heen execute1. If the GO sun was a direct
statement, a ~~ssage is typed and the program counter is restorP~
to what it waR when the direct GO SUB was executed. Then
execqtion halts.

Each _ygriabl~ takes on the value of the ex~ression.

Examples: LET A = SIN(A) stores the sine of A hack into A.

LET C2 = B3 = A(5*A) = 10/.76 I
Variables C2, B3 and the S*A element of array ~,
are all set to 10/.76.

There are 11 matrix statements. Some
any dimension, some work on an array of
while others must have a two ~imensional
array must be dimensioned b~fore the
the description of the statements which
and c represent the name ~f numerical
do not work with string lists.

MA't' READ c

can deal with an array of
3 or less dimensions,

matrix. In all cases thP
statement is ex~cutej. In
follow, the lett?.rs a, h
arrays. ,atrix statements

Read v~lu~s from the data bank into array c. The array c mus~
have thr~e dimensions oc less. If the data hank runs out of data,
there is an error. (Th~ data goes into the mrtt:rix: hut the µointPr
into the data ban Jc do~~ not m ave.} The data a re read in
sequentially for l.ists {i.rJ., c(O)., c(1), ••• ,c{n)}. For matrices,
the ~ata is read in by rows (i.e., c (1, 1), c (1 p2), ••• ,
c(1,n), c(2,1), ••• ,c(m,n). i:-or three aimensional arrays, val,u:>s
are read in by rows then plapes (i.e, c(1,1,1), c(1,2,l), ••• ,
c(1,n,1) ,c(2,t,1} , ••• , c(m,n,1) ,c(1,1,2), ••• , c(m,n,p) .)

Example: MAT READ Z

Print o~t the array c. The separator is the same as the allowe~
separators for PRIN~ statements (i.e., comma, semi-colon, colon).
If the separator is wissinq, it is assum~d to be a comma. Thn

values i'!.re printed out in the same order as they a re rPad in for n

1(l

Languages and Processors: RASTC

l'tay 1971

MAT READ statemPnt. The spacings betweeen values are a~•ermine~
by the separato~ as in a PRIN~ statement. For one rtimansi0nal
lists, the separator has no m~aninq since a carriage r~turn is
done after every value. For two ~imensional mat.rices, a carriaa~
return is done after every rnw. In three dimensional arrays, a
carriage return is done after every row and four blank lines are
printed hetween p!anes. Mace than 3 dimensions are not allowed.
If an ~le~ent has not heen stor~d in, then the messaqe UNINT is
printeJ rather than a value.

lU. T c = 'J'RN (al

Matrix c heco1J1es the transpose of matrix a. If an element. of a is
uninitialized, there is no error message, and thP corresponiin1
element in c becomes uninitialized. a and c must have 2
dimensions.

MAT c = ZEB

Every element in array c is set to zero.
are allowed on c.

Any number of ~im~nsions

!UT c = ION

The square matrix c is set to the identity matrix.
are zero except the diagonal, which is set to onP.

l'IAT c = CON

The rtrray c is set to all ones. The array c can have any n11 mhPr
of dimensions.

!UT c = a + b

Array c takes on the sum of array a and b. Arrays a, b, ~n~ c
must. have the same shape. Any nomber of dimensions is allowe~.

MAT c = a - b

Array ~ takes on the
Arrays a, b, and c must
dimensions is allowed.

differer.ce
have t. he

between arr~y a ~na drray b.
same shape. Any number of

11

Languages and Processors: qASIC

May 1971

Array c takes on the seal a r product of the ex_ErP.ssi on an,1 arrt1 y t,.
Any number of dimensions is allowed.

!UT c = INV (a)

Matrix c takes on the
errors and c is ditferP-nt
intermediate valu~.

inverse
fl:"Offl a,

of mat. C' ix a.
c may he

If there lt:"P any
changei into an

"ost statements can be executed immediately by simplv typinq thPw an~
are therefore refer.rP.d to as direc~ statements. The exceptions ~re th 0

following: DATA, E~D, S?OP, PAUSE, FOR, NEXT, RRTURN. When statements
such as GOTO, ON, and IF cause a ~mp in the proqram, execution is
resumed at the line specified with no change in the state of variables
or the GOSUB return stack. If a direct GOSUB is executed, a sp~cial
return is saved so that when the RETURN is exP.cuted a messaq~
specifying which GOSUB is rPtucning 1s printed. Contcol then ret11rn3
to the t.eletype such that a CONTINUE (see bEC>low) wiJl act as it woul,~
ha~e before the subroutine vas calle1.

~here are some statements which must be direct:

LIMIT integer

RUN

The ,iqi'..<!.!m! specifies a limit to the number of statements that may
be executed without central being returned to the console. Th 0

count of statements executed ls reset to 'Zero evAry t.ime th,!
execution of the program is resumed. To !"f'!move t.he limit typP
LI~T~ without an integer or ~itb a zero.

Execution of this ~irect stat~mnnt clears all v~t:"iables, art:"ays,
function definitions, and GOSUR cdlls. It resets values such as
the number of significant digits, the clock and the random numhec
generator seed. The data bank is restored. It sets uri t.hP
program to be just as it was before it was ever executert, ~nJ
initiates execution at. the line with the lowest line number.

CONTINUE

, 2

Languaqes and Processors: BASIC

May 1971

Execution continues where it last stoppf>ri. If execution was
stopped by an ercor, it r~sum~s at the line that caused the error.
Some statements may be partially executed when an error occurs,
but they can all be re-eKecuterl with no problem. If the linP
which should be executed has ~een deleted, execution resumes at
the next. line.

Languaqes and Processors: BASIC

Play 1971

CHAPTFR_2_-_BASIC_EXPRESSTON~

There are three types of eKpressions in BASIC: numerical, string, anrt
!~!cal. All expressions can use any level of parenthesis nesting to
group sub-expressions.

Most expressions are numerical; when evaluated, they produce a number.
The variables allowed in a num~rical expression are sim£le_variables,
consisting of a letter op~ionally followed by a digit, and subscri2te1
.!!tlabl~2 , consistinq of a lettec followed by a list of expressions
separated by commas and enclos~d in pacentheses. nser defined anrt/or
library functions (see 2.1 below) ~ay be used in numerical expressions:
numerical constants are also allowe1. Numerical expressions can ns~
the arithmetic operators+,-, *, /, and ~ (see 2.2 below). Two
operators •ust b~ separated by a parenth 0 sis or one of the abov~
elements, e.g., the qxpression A/-B is illegal, and must be writtPn
A/(-R). The error message which would b€ typed for this error is PRijOR
EXPRESSION MISSING.

~1~!.!HLexp~ession2 consist ot a 2!£,ing_y~ri~!!!.~ {subscript~d or sim ol <=>)

or a §1rin,g __ £.QJ!ill!l!• There an~ no string opeC'at.ors or functions ir1
BASIC. There are 26 simple strinq variables; A$ -Z$. There are also
26 string array nam~s, ,J -ZJ, which c~n be only one-iimensional lists.I
Strings must always he 15 characters or less. Strings can be assiqne~,
printed, or tested for lexicographical order. s There> are no othed
operations involving strings.

k2CJiCAl-~.!E~essi2.!!§ prod11ce 'l value cf true or false, anri can only
occur in rr comman-is. The relational f.Jperators, <, >, =, <=, =>, <>
operate on numerical (or stririg for= and<>) expressions to pro~uce ~
value of tru~ or false. The loqic~l operators&, !, and NOT operate on
expressions having the value true or false. Note that the NO~ oporator
is always~ unary operator and must not occur directly followina
another op~r~tor.

The following list qive~ all the operators in RASIC.
highest binding strength oc:::ur first. Groups ot

~ Lexicographical order coC'respon1s
Appendix A of the C!L TSS section.

to that 3hown

Those with th·~
oper;itor-s not

in Ta h lP. 1 o-F I

Languaq0s and ryrocessors: BASIC

separated by blank lines have th~ same binding strength.

*
I

+

=
<>,><,t
<
<=, =<
>
=>, >=

&

NOT

F.icponen t i"t ion

Multiplication
nivisioll

~dd~tion {may be unary)
5nhtract ion (may hP unai:-y)

E111al
Not eq11 a 1
Less than
Less than or equal
Greater than
~~eater than or equal

Logical OR

Loqical A~D

Log ica 1 NOT

In addition to the regular num~rical constants, the variable PI can hrc•
used as a constant. Its value is tbe best approximation to pi that is
possible on this machine.

The following list gives the functions that are predefined as part of
CAL TSS BAS!C. They are all called with one arqumPnt which may be any
numerical ~xpression. In the descriptions below the argument of thn
function is referred to as X, but it may he any vali1 numerical
expression •

.!ll~
ABS (X)
ACS (X)
ASN (X)
ATN (J)
COS (X)
EXP (X)
INT (X)

~
Returns
Returns
Returns
Returns
Returns
Returns
Returns
to the
value.

the absolute valu~ of X.
arc-cosine of 'f..
arc-sine of X.
the arc-tangent of X.
the cos i ne of X. X is i n C' a a i ans •
the value e"-.
thP. integer part of x. It tru ncatos Y
inteqer with the next lowest ahsol11t0

If Xis an inteqer it has no effect.

rtay 1971

LOG {X)
LGT (X)
RND (X)

SGN (I)

SIM (I)
SQR (I)
TAN fJ)
TIM (X)

Lanquaqes and Processors: 1ASTC

Returns the natural loqarithm of X.
R~turns loq~ of x.
If Xis ZBCO or RNO has heen called with a
non-zPrc argument it returns the next pseu<lo
random number. If X is positive and RND has
not been called with a non-z~ro argument, the
sequence of random numbers is aftecte~ hy X in
a cepeatable manner. If X is negative an:'l RNn
has never beer called with a non-zero argu
ment, the real time clock is used to attcct
the sequence of ran1om numbers.
Returns the sign of X. If Xis neg-ative, it
returns -1. If X is positivP., it rE"tt1rns +1.
If Xis O, it returns O.
Returns the sine of X. X is in r-adians.
aeturns the square root of x.
Returns the tangent of X. Xis in ra~ians.
Returns the amount of computer timP (in
seconds} used. The RUN command res?.ts the
clock to zeco.

Hi

Languages ani Processors: qnsTC

Play 1971

C'H l', 01' ER_] - _FEATURE s_ 0 F _ U sn1r,_ C ~ L_ 1' S s_B AS TC

This section describes the differenc~s between the C~L rss implementa
tion anij thP implementation on the GE 265 as ~escribed in A_~ui~e_to
§ASIC PrQg:C'!lll!!!~d!ll __ !_ T!me~.ri.n!L.bfJ:!!!Ll!a_ge hy s penc~r.

The criterion for d~t.ermining the format of a number when print i nq
differs sliqhtly.

A semi-colon always causes two spaces to be typed, rather than a numhPr
dependent on the si~e of the last value typen.

The teletype line is divide~ into 1Q character zones rather than 15
character zones when printing values separated by commas.

~:.1._!dditional Features.

The SIG statement was ~dded to allow more significant digits to he
printed out. This can mess up the appearance of the output as a nnl'lher
can be more than the 2one size use<l for commas.

The separator : was adii~rl in PRINT statemE>nts to allow ,n1l1Jc', to r'1'

printed with no spacing.

The PAUSE statement was added to aid in debugging.

GOTO can be used as v~ll as fHEN in an TF command.

There is no limit to the number of dimensions allowe~ on an array.

The range of a subscript given in a DIM command can be any expression
rather than a constant.

soae of the relational operators have alternative forms.
2. 2 above.

SeE" Section

The logical orerators~ NOT,£. and! were added to require fewer Jines
to make a ~~~ision.

The variable PI was added to provi~e a good value of pi.

17

Languages and Processors: BASIC

rtay 1971

1Lls.]_!122ing Fea!Y~2

The PRINT USING command is not implemented.

The function CLK is not implemented.

An example of how to enter and debug a BASIC program should hPlµ
clarify matters. R~SIC is called by typing BASIC to thP comrnani
processor. When BASIC is ready to accept statements, it will typP
BASIC HERE, followed on the next line by its prompt character, a colon
(:). To create a program, insert mode is enteren by tvpinq I followei
by a carriage return. Now the lines of the program can be typen into
the file. Note that, as in the Editor, it is necessary to he in ins0rt
mode to add lines to the program. If a line to be added has ~n error
in it, BASIC will type an error message ann that line will not qo into
the file. Instead, the line rPmains as the old line in the LinP
Collector so that it can be corrected before being put into thn
proqram. Jf a bad line is in a file that is read in with the R commani
of the Editor, the line does not go into the program, and it 1s type~
after the error message. A line already in the program can bA changed
or edited, but if the new "corrected" l.ine has an error in it, it i.s
typed after the error message and the chanqe will not he impl0m0n+e~.
To aid in tleLugging, some PAUSF. stat~ments may be adder!. PfifT'~r. stopc:
execution with a message giving the next linP to be Pxecut~d, thPrehy
allowing the programmer to check values with direct PRINT stat~wµnts,
or to enter any other iirect statements. The program may b~ mo6ifie1
or changed in any ~ay during a rAOSE. Unless the last line is ~n EN~
statement, the program cannot be executed.

Execution of a BASIC program is started by typing RUN. All variablt:s,
functions, and arrays are made to be undefine~ and execution of thP
program start.s at thP. beginning. If there are some variables which
should not he destroyed because thP.y have been set with direct
stateae nts or from execution of a previous proq ram, execu t. ion can ri0
started with a direct GO '!'O. When the program encounters th-: P:ND or 1

STOP statement, it stops with the message EXECUTION COMPLETE.

The progra~ may stop in the middle of execution for sevPral rP~son~.
If there is an error in running, such as division hy zero or 'l 1u1np t,)

a non-exist:@nt line, an !3rror message is typt>d. ont and Pxecution ic;
halted. Direct statements and/or editing requi.3st.s can then be entere,1
to discover and fix the problem. !f, for example, the proornm jumped
to a non-existent line, it could b~ fixed by ad~ing a line which w~s
forgotten or correcting the line number in the GO ~o statement. After
the problem has been fixed, the proqrarn could be restarten with il Rt!'!
statement or CONTitlUF:, which would res ta rt exPcut ion with th0 1 i nr>
where thP error occurred. RxPcu~ion can be halted by executinq mor~

Languages and Processors: 1A S TC

May 1971

lines than specified by a direct LIMIT statement. By using LI~I~, ~
program can be prevented from geti:ing r:aught in a loop. It a proqra,n
gets in a loop, it is possihle to get out by hitting the panic hutton -
CTRL- SHIFT- P. A 111es5age is prin te<l as if an error haa occ 11 ri:-en.
Execution cdn be resumed by typing CONTINUE.

There are two ways to leave BASIC. These are th~ samP
are used to leave the Rditor. G means to quit and
program that. was createrl. P ,.f!!s.!L~ saves the text of the
file specified so that. it can he printed or loaded again

statements a::;
to cl~stroy th0
pr:-01 r:i m on t hP
la t"'r.

1£.J_!ENU~BERING A BASIC PROGRA~

To rearrange a sloopy B~SIC program under CAL TSS, type R~NU~ tn~!~
where fn~ is the text file cont.a.ining the progr"im as a. parnm1"t(:>r
(e.g., RENUM PROG). Provided the program is a legal BAStC program, th~
lines will he arranged in order of line number. Then RENU~ asks •h~
user if he wants to renumber the program. If the response is a linP
that begins with NO, PFNU" returns to the Command Processor and th~I
program lines are sorted but otherwise unchanged. Any other responsn
will cause the lines specified to have the new line numbers sp~cifiPi
by the user. All r~ferences to these lines will also he changed to th0
new line nu~bers. The user indicates which lines are to be chanqP~ anrt
how, by r~sponding to the four questions listed below. It is not
possible to renumber lines so that the execution order of the proqram
is changed. If that is attempted, there is an err:-or. An a pp ropri at,?
error message is typed and some or all of the qu?stions are reaske~.
The four questions take numbers as responses. Characters after the
first non-nurueric, non-blank character are ignored. If thP number
typed is ~ero or missing, the default value is use1. ThP tollowin1
table gives the questions and theic meaning in the or1er in which they
are asked.

PROM?

TO?

START?

TNCREMENT?

Give the
renumber.
program.

Give the
renumber.
program.

line number of the ficst line to
Default is the first line in thP

line number of
Default is the

the
last

last
lini-~

1 ine t ()
Of t hP

Give the number
line is to have.

which the first renumher:-e~
Default is 100.

Give the increments by which the succee~in1
1 in e nu m be rs are to d i ff er. De fa u 1 t i s 1 r, •

Languages an<l Processors: 9~SIC

CHAPTER_4 - FEATUPEs_nF_USING_BATCH_BASTC

4.1 BASIC STATEftEWTS -------------
The BASIC language is also available under the batch system, CALIDOS
COPE. in a slightly fflodified form. The first and most obvious
difference is the absence of direct statements, since there is no
programmer-machine interaction under a batch system.

Batch BASIC has the same set of indirect statements as CAL TSS ~ASIC,
with the exclusion of the PAUSE statement which is not appropriate for
batch processing. However, two of the !/0 statements, INPUT and PPtNT,
b~have differently from their CAL TSS counterparts since there is nn
teletype.

The INPUT statement inputs values from cards immediately followinq th0
EOB card which ends the proqra111 (seP Section !!.!.L_Q~~--~t!!.E. 1':lelow).
The data on the cards must he in thR same format as they were in the
teletype lines under ClL TSS BASIC. Data cards are read until dll th0
variable addresses are satisfied.. If only some of the values on a ci'irn
are used by the INPHT statement.r the rest are .saved for the next INPfl1'
statement. tf a card contains a syntax error such as an illegal v~lue,
e.g •• one lacking a closing quote or with too large an exponent, th~
card image, with blanks removed, is printe~ on the outnut filesPt
followed by an error message. Then the earn image is discara~a.
However, an error in type, such as specifying a number where a strin~
belongs, is treated as an execution ~rror.

It is possible for INPUT to read card images from a file other than th0
fileset INPUT. The alternat~ fileset name is specified as the first
parameter of the coqtrol card used to loaa and execu+e BASIC (se~
Section 41 3 Execution).

The PRIM~ statement interacts with the line prin+er in the s~me way ~s
it does with the teletype undcar CAL TSS BASIC. Lines :ice ·,till
restrictetl to a maximum of 72 characters. No carriage control
characters are need~d since~ blank for single spacing is inserted a~
the beginning of each linf'. 1'he on .. put generated nurinq execution
fol lovs im11ediately a fte[' the listi r.g of the program qe ner i te ,1 hy th·~
BASIC interpceter.

Languaqes and Processors: BASIC

Kay 1971

hZ,_QECK SETUP

The program to be interpreted by BASIC must be punched onto cards, an~
line per card. Every line •ust begin vith a line number and it a car4
is out of order (i.e., lin~ number~ are not in sequential or~er
ignoring gaps), a warning me8sagP is printed below the car~ image on
the output fileset, and it is executed in the order specified by its
line number. If a syntax error. is rletected on a card, an error messaq""
is printed below the card image and that card image is ignored. ThP
deck is set up as follows:

Job card
COl'IIMON,B!SIC.
LGO, BASIC(,i!rnut !.J!M.£]•
FOP

[Program deck
EOR
fData cards, if any

EOJ

The cards for loading and executing the BASIC interpreter (thos?
between the Job Card and first EOR card) are subject to change. When
an EOR (7-~-9) card or an ECJ (6-7-A-q) card is read, the program
begins execution.

The program is executen evBn if comt:ilation Prrors were detect.ea: th~'
offending lines are simply ignored. If a fatal error occurs durin1
execution, all variables which have been assigned values and all arrays
which have been dimensioned are dumped to the output fileset. Values
are printed with seven significant digits. Arrays ot 1 dimensions or
less are dumped as if a ~AT PRTNT statement were beinq executed.
Arrays of more dimensions are dumped as they are stored in memory,
i.e., according to the formula:

1+(i-1)+I*(j-1)+I*J*(k-1)+I*J*K*(l-1)+ ••••

where I,J,K,L ••• are the dimensions and i,j,k,l ••• are th~ subscript
values for a given element. Fer eiamfle, if any array has 4 dimensions
(3,3,3,3) and the desired element is (3,3,1,1}, it will app~ar as t.h0
9th value in the dump:

1 + (3- 1) + 3 * (3- 1) + l * 3 * (1- 1) + 3 * 3 * 1 * (1- 1) :q •

Successive values are printe~ across the page in rows.

21

