Languages and Processors: BASIC

Nay 197

Introduction

The BASIC language is described in detail in a primer by Donald D.
Spencer, A__Guide _to PBASIC Programming: 4 Time-Sharing_Llangquade.,
published by Addision-Wesley, 1970. The purpose of the document which
follows 1is to indicate where the TSS implementation of BASTYC differs
from the langnage described by Spencer as well as to provide a briet
description of the 1language for those who are familiar with other
programming languages, Tt also nrovides details of how the interaction
between the auser and the system works.

Languaqges and Processors: 9ASIC

May 1971

CHAPTER_1_- BASIC_STATEMENTS

1.1 _STATEMENY TYPES

BASIC accepts three types of statements, The first type, called a
direct statement, is executed immediately and most standard statements
can be of this type. With a direct statement a value can bhe printed
out or a variable changed. Some statements onlv make sense when
executed directly, e.g., the statement which starts execution,

The second type of statement, called ap indirect statement, is saved in
a program to be executed later. Indirect statements are saved 1in a
text file by wusing the third ¢type of statement, staniard Fditor
requests. (See 2.2 Bditor uader PART THREE - The CAL Time-Sharing
System.) All of the editing requests of the taxt editor can be used to
create and edit a file of indirect requests to be executed when th»

program is ctua.

Every indirect statemnent must start with a 1line number. ®hen the
program is rum, the 1lines are executed in order of line number
regardless of their order in the text file. Therefore it is advisable
to number 1lines by 12's in order tc leave room for lines which might
have to be added while debugging, Although the lines may be in any
order, it 1is less confusing if they are kept in order. 7Tt is also
convenient +to keep debugging statements at the bottom of the file,

If a program is not in order and/or the line numbers have uneven gans
between them, the program can be cleaned up by calling the subsysten
RENUM, {See Section 3.3 belowv.)

1.2 BASIC Statements

The following is a bri=2f description of the statements which the BASIC
on the CAL TSS accepts. In the following descriptions square brackets
indicate items which are optional., If the first bracket is followed by
three dots, then any number of the items in brackets 1s allowed. CAL
TSS BASIC accepts some statements and capabilities which are not in the
BASIC described in 2__5Suide _to_ _BASIC Programming: _A Time-Sharing
Lanquage by Donald D. Spencer. In the descriptions which follow,
these features are indicated hy a focotnote, A few features describe?
by Spencer are not in this BASIC and are listed in Section 3.1.3 below.
Unless otherwise noted, a statement has no effect if there is an error

during its execution.

May 1

1:.2.1

Languages ani Processors: 3ASIC

97

Declaration Statements

REM any_character string

DATA

Remark. This is a comment and has no action when executed,

Example: REM THIS I35 A COMMENT

value [...,valne]

W¥hen executed this statement has no effect. All the data
statements in a program form a data bank of values for +t+he READ
staterments to use., The values wust be numerical constants or

string constants, Strina constants do not need to have giuotes
around them if they start with a letter and contain only letters

and digits.
Examples: DATA 10,20,6.3E452 - 3 numerical values,

DATA "MINOS:#+10",-10,TZEN,+10 - A string, a number, 1
string, and a number,

DIM array name {dimensiop list) [...,array name {dimension_list)]

—— D e i i s S e e S D e v— i o

The DIM statement reserves space for an array. JIf there was an
array with the same name, it 1s deleted and a new array is
reserved wvithout any data 1in it. The dimension list is one or
more expressions separated by commas.! If +the wvalue of the|
expression is not an integer, it is truncated to the next smallest
intager. Any number of dimensicas are allowed., If there is only
one dimension, it is called a list and the index can go from 2Zero
to the value of the expression, T1f there 1is more than one
dimension, the iandices go from one to the value of the expression.
String arrays {those with a $ in the name) can only bhave on»
dimension. If the total amount of space to be reserved is qgreater
than S$000, an error occurs.

A one or two dimensional array can be referenced without a DIV
statement explicitly dimensioning it. Tf this is Aone, the array
is dimensioned to be of size 10 or 10 hy 10,

Examples: DIM A(60), BS(1VY), C(5,N,3%N)
A is dimensioned to be a 61 element list with indices
from 0 to 60. BS$ is a 12 element list of strings. C

- — s > e Al S e ~erh .

! Here Spencer restricts you to constants and one or two dimensions.

Lanquaqges and Processors: BASIC

May 197

becomes a 3 dimensional array whose size depends on
the value of N when the DIM statement is executed,

NIM B(I,J,I*J,2)
B becomes a four dimensional array whose indices can
range from 1 to the value of the expressions given.

SIG expressiop 2
The number of significant digits to be printed for a number is
changed to the value of the expression. The value must be between

1 and 13, The default value is 7. When numbers are printed they
are rounded to this many digits.

Example: SIG N

PAUSE [string] 2
Execution pauses for debuqgging., When this statement is executed,
string is printed if it exists, otherwise a message indicating the
next line to be executed appears. During the pause, BRASIC can

accept direct statements and/or editing requests, after which
execution can be resumed by typing CONTINUE.

EFxamples: PAUSE
PAJSF "WE SHOULDN'T BE HERE™

END

The last line in every program must be an END statement, When
executed, it stops executicn.

STOP
This statement stops execution of the program; it acts like a junmo

to the END statement.

DEF FN letter (parameter) = expression

Rhen executed this statement defines a one line function with on~
parameter. Th2 dummy parameter used in defining the function 1is
not affected wvhea the function is called,

- — - -

2 Not mentioned in Spencer.

Lanquages and Processors: BASIC

May 1971

Example: DEF PFNG(X3) = X3/10 - AG/X3

After this statement is execnted FNG(expression) can

—— D S e S e

be used as a sub—-expression in any =xpression. For
exaaple one could write:

LET A{PNG(N#+2)#1) = PNG(2*A3)
This would execute exactly as if one had written
LET A({(N+2) /10 -A0/(N+2) + 1) = (2%A3) /10 - AO/(2%Ar3)
Note that X3 1is only a dummy parameter and is not
affected, and that the value used for A0 is equal to

tha value A0 has when the function is called, not when
it is defined.

1.2.2 Input/Cutput Statements

READ variable [...,variable])
Values from the data bank formed by DATA statements are stored
into the variables. 1If there is an error when this statement 1is
executed, the variables before the one with the error in it are
altered, but the data bank pointer is not moved so that the line
can be re-executed.

Bxampl=a: READ F$,C,G2
Read a string and 2 nuabers from the data bank.

INPOT yariable [...,variablza)

INPUT reads values typed by the user at the teletype, When
executed it types a question mark and expects the person at the
teletype to type values which are appropriate, 1If the person
makes a aistake, such as tvpinag too many values or typing a string
instead of a number, he is.told about his mistake and that line is
ignored. If he does not type enough values, the first ones are
accepted and a question mark is typed asking for more values, Tt
is best for the proqgram to have a PRINT statement to tell the user
what value to input.

Example: INPUT A,B,AS(N)
The user should type twc numbers and a string (separated
by commas) when this is executed, The line to he typedl
can be anything that would be 1legal after a DATA
statement, i.e.,, numhers and strings separated by
CCmmAS.

May 1971

PRINT [...iten]

PRINT outputs charactars on

Languages and Processors: BASIC

the teletype. Fach item specifies

what is to be printed. 1In addition to the items listed below, a

carriage return will be Aone
item was a comma, semi-colon,
done if a 1line exceeds 72
describes the allowable items

itep
numerical expression

TAB (expression)

at the end of a line unless th= last
or colon., A carriage return is also

characters, The following table
in a print statement,

action

The expression 1s evaluated and then
rounded to the appropriate number of
digits (see SIG request above). Tt
the number is negative, a minus siqgn
is printed. TIf it 1is positive, A
blank 1is typed. Then the numerical
value of the number is printed in a
format that seems best,

The contents of the string variable
{either simple or subscripted) Are
prirnted.

The characters enclosed 1n quotes
will Le printed. There mavy be any
number of characters, The only
character not allowed in the strino
is a Adouble quote,

The expression 1is evaluatad and

truncated to an inteqger. Then
blanks are typ=d until the teletyp~
is positioned to type the next
character in the column specified by
the 1integer. There is an error if
the result is not between one and
seventy-two. If the teletype head

is beyond the <column specified Dby
the expression, a carriage return 1is
nperformed, then blanks are typed
until the head 1is in the ©proper
coiumn.

BRlanks are printed until the begin-
ning of the next 14 character zone
is reached. This is the most common
ard easiest way of getting numhers
to line up correctly. From one to
T4 btlanks will be printed.

May

Languages and Processors: BASIC

1971

e

Two blanks are printed.

A colon? does not cause anything to
be printed, but it is useful as a
separator to print such things as
the concatenation of two strino
variables, or to end a lin~ without
any blanks and without a ©carriage
return.

Examples:
PRINT does a carriage return.

PRINT 2S$,B1,TAN(B1*%B1) prints the string in A$; moves to the next|
print zone; prints the value in B1; moves to the next oprint
zore; prints the tangent of the value in B1 squared; and ends
with a carriage return.

PRINT ™"RESULTS PRINTED IN A TIGHT FORMAT":A1;2%A2;3*%A3 prints the|
message immediately followed by the three values separated by
? blanks, and terminated by a carriage return,

PRINT TAB(N):¥ prints the value of N startinqg in the N-th column -|
providing N is between 1 arnd 72. Note that since N is
positive, column N will be left blank to indicate that the

sign of N is positive,

PRINT "INPUT COUNTM": prints the message TRPUT CODNT and then|
leaves the teletype where it stops, If the next statement
were an TNPUT command, it wonld type a question mark right
after COUNT,

PRINT A "=% B prints the contents of A followed by = immediately|
followed by the value in B.

PRINT A({T7,J); prints elements I,J in matrix A followed by two|
blanks but no carriage returr.

1.2.3 Control Statements

RESTORE

When executed this statement restores the pointer into the data
bank to the top so that the bank is in the same state as it was
when execution started.

3 Not mentioned in Spencer.

Languages and Processors: BASIC

May 1971

GO TO line_number

This statement transfers control to the designated line,

ON expression GOTO line number [...,line_number)]

o i o ot i e i o

The value of expression designates which line is to be executed
next. If the value is 1, execntinn jumps to the line with the

first 1line number., If the value is 2, the second line number is
used, etc. The axpression is evaluated and +truncated to an
integer. The result must he between one and the number of line
numbers given. This statement can be used to start or restart
executinn when usel as a direct command,

Example: ON A/10 GOTO 10,25,50,65 divides A by ten, thern|
truncates to an integer, which must be between 1 and
4. If the result is 1, execution will resume at line
10. £ it is 2, execution will continue at 1line 25,
and so forth for 3 and 4.

IP logical expression THEN line pumber
IF logical expression GOTO line_nuaber

These requests are 1iuterchangeable. The logical_expression is
evalnatead to bte either true or false, If it 1is true, then
execution jumps to the line with the given line number; otherwise,
it falls +through to the next line, When wused as a direct
statement, execution resumes at the indicated line if the expregs-
sion is true; otherwise nothing haprens.

Examples: TP A < P & RF(N)DCYONE"™ GO TO 65 jumps to line 65 if}
the value inp 2 is less than the value in B and the Nth
strinog in list A$ is not equal to the string "ONE",

IF ¥OT (A< B ! C >= D) THEN 70
If it is not% the case that either A is less than 8 or]
C is oreater than or egual to D, then jump to line 70,

FOR simple variable = expression TC expression [STEP expression]
NEXT simple variable

The FOR and NEXT statemerts go together to generate loops. When
the FOR statement is erecuted the three expressions are evaluate?d

* The operators NOT, £, and ! are rot allowed in the BASIC Adescribhed
by Spencer.

Languages and Processors: BASIC

May 1971

first. TITf the STFP expression is missing, its value is assumed +n
be one. Then the simple variable is given the value of the first
expression and the other two are saved for incrementina and
terminating the 1loop. If the value of the simple variable 1igs
greater than the second expression (less than if the step value is
negative), the loop is not executed at all. Otherwise the loop is
executed down to the NEXT statement., The NFXT statement adds the
step value to the siuple variable (which must match the sinmple
variable in the corresponding FDOR statement), and re-executes the
locp unless the variable is qgreater (less if step negative) than
the TN expression. When the loop terminates, the simple variaple
retains the value it had durinqg the last iteration of the loop.
Note that the value of the simple variable can be changed 1in the
ioop but not the step or terminating value. FOR loops can be
nested but the simple variables on paired NEXT and FOR statements
must match,

Examples: FOR I = -2 T0O 2 STEP N/10 |
I 1is set *o0 -2 and the value of N/10 is saved for
incrementing.

FOR J = I TO N-3
J is set to the value of I and incremented by 1 until it
has a value greater than ¥N-3,

NEBYXT J |
When executed, it adds ' to J and then tests for the
value 1ia J being greater than N-3 was when the loop was
entared,

NEXT ¢
¥hen executed, it adds the valun which N/10 had to I and
loops if I is lass than or equal to 2.

POR K = -1 T0 +1 STEP -1

NBXT K l
This loop will not ex2cute even once since K is alreadv
less than +1, but K wvill be given the value -1,

GO SUB line number

GO S5SU93 acts 1like a GOTO except that it saves the address of the
next line so that a RETURN ecan go to that 1line, It <can bhe
execiatad directly 1in which case the return statement stops
exeru1tion.

RETURN

Languages and Processors: BASIC

May 1971

Execution nqoes to the line after the last 60O SUR for which A
RETURN has not heen executed. If the GO SUB was a direct
statement, a message is typed and the program counter is restored
to what i+t was vhen the direct GO SUB was executed. Then
execntion halts.

1.2.4 Assignment_ Statement

LET variable = [...variable =) expression
Bach variable takes on the value of the expression.
EFxamples: LET A = SIN(A) stores the sine of A bhack into A,

LET C2 = B3 = 2(5%A) = 10/.76 |
Variables C2, B3 and the 5*A element of array A,
are all set to 10/.,76.

1.2,5 Matrix Statements

There are 11 matrix statements, Some can deal with an array of
any dimension, some work on an array of 3 or less dimensions,
vhile others must have a tvwo dimensional matrix. 1In all cases the
array mnust be AJimensioned before the statement is executed. TIn
the description of the statements which follow, the letters a, b
and ¢ represent the name of numerical arrays. Matrix statements
do not work with string lists.

MAT READ ¢

Read valunes €from the data pank into array c. The array ¢ must
have three dimensions or less. If the data bank runs out of data,
there is an error, {Tha data goes into the mAatrix but the pointer
into the data bank deoes not move.) The data are read 1in
sequentially for lists (i.e., c(0), c{(1),.s.y,c(n)). For patrices,
the data is read in by rows (Lee., c(1,1Y, c{1,2), .o,
c(l,n), c2,},.0.,c{m,0n). For three dimensional arrays, values
are read in by rows then planes {i.e, c(1,1,1), c(1,2,1)Y, ..,
c{lyn, Y ,c2,9,V,v.0, c{(m,n,M,c(1,1,2), «e., cln,1,p).)

Example: MAT READ Z

MAT PRINT c { separator)

Print onuat the array ¢. The separator is the same as the allowed
separators for PRINT statements (i.e., comma, semi-colon, colon).
If the separator is wmissing, it is assumed to be a comma. The
values are printed out in the same order as they are read in for a

10

May

NAT

NAT

MAT

MAT

MAT

MAT

Languages and Processors: RASTIC

1971
MAT READ statement. The spacings betweeen values are determined
by the separator as 1in a PRINT statement. For one dimensinnal
lists, the sepavator has no meaning since a carriage rtTeturn 1is
done fter every value. For two dimensional matrices, a carriaas
return is done after everv row, 1In three dimensional arrays, a
carriage return 1is done after every row and four blank lines are
printed hetween planes. More thap 3 dimensions are not allowed,
If an element has not been stored in, then the message UNINT is
printed rather than a value.

c = TRN(2)
Matrix c becowres the transpose of matrix a. If an element of a is
uninitialized, there is no error message, and the corresponding
element in «c© becomes uninitialized. a and ¢ must have 2
dimensions.,

c = ZER
Every element in array c is set to zero. Any number of Aimensions
are allowed on c.

c = TDN

The square matrix ¢ is set to the identity matrix. All elerents
are zero except the diagonal, which is set to one.

c = CO¥
The array ¢ is set toc all ones. The array c can have any number
of dimersions.

c=a+b
Array c takes on the sum of array a and b. Arrays a, b, and «c
pust have the same shape. Any nomber of dimensions is allowed,.

c=a-k=%b

Array ¢ takes on the differerce between array a and array b.
Arrays a, b, and c must have the same shape, Any number of
dimensions is allowved.

11

Languages and Processors: RASIC

May 1971

MAT c = {expression) * b

e e i S s e

Array c takes on the scalar product of the expression and array bh.
Any number of dimensions is allowed.

NAT ¢ = IXNVY (a)
Matrix c¢ takes on the 1inverse of matrix a. If there are any
errors and ¢ is different from a, ¢ may be changed 1into an

intermediate value.

1.2.6 Direct Statements

Most statements can be esxecuted immediately by simplv typing them ani
are therefore referred to as direct statements. The exceptions are the
following: DATA, END, STOP, PAUSE, FOR, NEXT, RFETURN. When statements
sach as G070, ON, and IF cause a jump 1in the program, execution is
resumed at the line specified with no change in the state of variables
or the GOSUB return stack. If a direct GOSUB is executed, a spacial
return is saved so +that when the RETUBN 1is executed a messaaqo
specifying which GOSUB is returning is printed. Control then returns
to the teletype such that a CONTINUE (see below) will act as it would
have before the subroutine was called.

There are some statements which must be direct:

LIMIT inteqer

The intaqger specifies a limit to the number of statements that may
be executed without ccntrol being returned to the console, The
count of statements executed is reset to zero every time the
execution of the program is resumed, To remove the limit type
LIMTIT without an integer or with a zero.

RUN
Execution of this Airect statement clears all variables, arrays,
function definitions, and GOSUB calls. It resets values such as
the number of significant digits, the clock and the randon number
generator seed. The data bank 1is restored. It sets up the
program to be Jjust as 1t was before it was ever executed, and
initiates execution at tha line with the lowest line number.

CONTINUE

12

Langunages and Processors: BASIC

May 1971

Execution continues where 1t 1last stopped, If execution was
stopped by an error, it resumes at the line that caused the error.
Some statements may be partially executed when an error occurs,
but they can all be re-executed with no problem. If the 1line
wvhich should be executed has heen deleted, execution resumes at

the next line.

13

Languaages and Processors: BASIC

May 1971

CHAPTFR_2 - BASIC EXPRESSIONS

2.1 EXPRESSION TYPES

There are three types of expressions in BASIC: numerical, string, and
logical. All expressions can use any level of parenthesis nesting to
group sub-expressions.

Most expressions are numerical; when evaluated, they produce a number.
The variables alloved in a numerical expression are simple_variables,
consisting of a letter optionally followed by a digit, and subscriptes
variables, consisting of a 1letter followed by a list of expressions
separated by commas and enclosed in parentheses. User defined and/or
library functions (see 2.3 below) may be used in numerical expressions;
numerical constants are also allowed. VNumerical expressions can use
the arithmetic operators +, -, *, /, and 4 (see 2.2 below). Two
operators must be separated by a parenthesis or one of the above
elements, e.g., the expression A/-B is illegal, and wmust be written
A/(~B). The error message which would bhe typed for this error is FPRROR
EXPRESSION MISSING,

String expressions consist of a string variable (subscripted or simple)
or a sktring_ _constant. There are no string operators or functions in
BASIC. There are 26 simple string variables; A% -Z%. There are also
26 string array names, A3 -Z3, which can be only one-dimensional lists.|
Strings must alvays bhe 15 characters or less. Strings can be assigned,
printed, or tested for lexicographical order.S There are no otherl
operations involving strings.

Logical _expressions vproduce a value of true or false, and can only
occur in I¥ commands. The relatioanal operators, <, >, =, <=, =, O
operate oan numerical {or string for = and <>) exvressions to produce a
value of true or false. The logical operators §, !, and NOT operate on
expressions haviag the value true or false, Note that the NOT operator
is alwvays a unary operator and nust not occur directly followina
another operator.

2.2 OPERATORS

The following 1list gives all the operators in BASIC. Those with the
highest binding strength occur first, Groups of operators not

S Lexicographical order corresponds to that shown in Table 1 of
Appendix A of the CAL TS5 section,

May 1971

separated by blank lines

i i e s s i e i s i st e S i

+

Relational Operators

OO, *

=<
>=

Operators

NOT
In

used as a constant.
possible on this pmachine.

2.3_PREDEFINED FINCTIONS

The
CAL TSS BASIC.
numerical expression,

function is referred to as

expression,

Name
ABS (X)
ACS (X)
ASN (X}
ATN (X)
COoS {X)
EXP (X)
INT (X)

addition to the regular numerical constants,
Its value is the best approximation to pi that

Languages and Processors:

have th=2 same binding strength.

Exponentiation

Multiplication
NDivision

Addition (may be unary)
Subtractinn (may be unary)

Equal

Not egual

Less than

Less than or equal
Greater than

Greater than or equal

Lodical OR
Logical AND

Logical NOT

BASIC

the variable PI can bhe
is

following 1list gives the functions that are predefined as part of

They are all called with one argument which may be any

In the descriptions below the argument of tho
X, but it may be any validl numerical

se

Returns the absolute value of X,

Returns arc-cosine of Y.

Returns arc-sine of X,

Returns the arc-tangent of X.

Returns the cosine of X. X is in radians.

Returns the value e¥*,

Returns the integer part of X. It truncates ¥

to the integer with the next lowest absolute

valune., Tf X is an integer it has no effect,

May 1971

L0G {X)
LGT (X)
RND (X)

SGN (X)

SIN (X)
SOR (X)
TAN (X)
TIM (X)

Languages and Processors: 3ASIC

Returns the natural logarithm of X.

Returns log, of X.

If X is zero or RND has been called with a
rpon-zerc arqument it returns the next pseudo-
random number, If X is positive and RND has
not been called with a non-zero arqument, the
sequence of random numbers is affected by X in
a repeatable manner, If X is negative ani RND
has never beer called with a non-zero argu-
ment, the real time clock is used to atfect
the sequence of random numbers.

Returns the sign of X. If X is negative, it
returns -1. TIf X is positive, it returns +1,
If X is 0, it returns 0.

Returns the sine of X, X is 1in radians,
Returns the square root of X,

Returns the tangent of X. X is in radians.
Returns the amount of computer tine {1n
seconds) used. The RUN command resets the
clock to zero.

16

Languages and Processors: RASIC

May 1971

CHAPTER 3 - PEATURES OF ISING_CAL TSS BASIC

3,1 CAL TSS_BASIC ¥S. GE 265 RASIC

This section describes the differences between the CAL ISS inmplemcnta-
tion and the implementation on the GE 265 as described in A_Guide to
BASIC Programming: A Time-Sharing ianquage by Spencer.

3.1.1 Differences

The criterion for determining the format of a number when vprinting
differs slightly.

A semi-colon alwvways causes two spaces to be typed, rather than a number
dependent on the size of the last value typed.

The teletype 1line 1is divided into 14 character zones rather than 15
character zones when printing values separated by commas.

3.1.2 Additional Features.

The 5IG statement was added to allow more significant digits to bhe
printed out. This can mess up the aprearance of the output as a numher
can be more than the zone size used for commas.

The separator : was adde~d in PRINT statements to allow values to ro
printed with no spacing.

The PAUSE statement was added to aid in debugging.
GOTO can be used as well as THEN in an YF command.
There is no limit to the number of dimensions allowed on an array.

The range of a subscript given in a DIM command can be any expression
rather than a constant,

Some of the relational orerators have alternative forms. See Section
2.2 above.

The logical operators, NOT, £, and ! were added to require fewer lines
to make a dAecision.

The variable PI was added to provide a good value of pi.

17

Languages and Processors: BASIC

May 1971

3.1.3 Missing Features

The PRINT USING command is not implemented.

The function CLK is not imrlemented.

3.2 RUNNING A _BASIC PROGRAM UNDER TSS

An example of how to enter and debug a BASIC program should helpn
clarify matters, RASIC is called by typing BASIC to the command
processor. When BASIC is ready to accept statements, it will type
BASIC HERE, followed on the next line by its prompt character, a colon
(s). To create a program, insert mode is entered by tvping I followed
by a ~carriage return. ©Novw the lines of the program can be typad into
the file. Note that, as in the RBditor, it is necessary to be in insert
mode to add lines to the program. TYf a line to be added has Aan error
in 1it, BASIC will type an error message and that line will not go into
the file. TInstead, the line remains as the o0ld 1line in the Line
Collector so that it can be <corrected before being put into the
program, If a bad line is in a file that is read in with the R comman?
of the Editor, the line does not go into the program, and it 1s typed
after the error message. A line already in the program can be changed
or edited, but if the new "corrected" line has an error in it, it is
typed after the error message and the change will not he implemented,
To aid in debugging, some PAUSE statements may be added. PAUS® stopu
execution with a message giving the next line to be executned, therehy
allowing the programmer to check values with direct PRINT statepents,
or to enter any other direct statements. The program may bhe modifiel
or changed in any way during a PAUSE. Unless the last line is ap END
statement, the program cannot be executed.

Execution of a BASIC program is started by typing RUN. All variables,
functions, and arrays are made to be undefined and execution of the
program starts at the beginning. If there are some variables which
should not be destroved because they have been set with direct
statements or from execution of a previous proqgram, execution can be
started with a direct GO T0O. ¥®fhen the program encounters thes END or 23
STOP statement, it stops with the message EXECUTION COMPLETR,

The program may sStop in the middle of execution for several reasonc.
If there is an error in running, such as division by zero or a jump to
a non-existent 1line, an error pessage is typed out and execution i
halted. Direct statements and/or editing requests can then he entered
to discover and fix the problem. If, for example, the program jumped
to a non-existent line, it could he €fixed by adding a 1line which was
forgotten or correcting the line number in the GO TO statement., After
the problem has heen fixed, the proaram could be restarted with a RUY
statement or CONTINUR, which would restart execution with the line
wvhere the error occurred. Fxecntion can be halted bv executing mor-

19

Languages and Processors: 3ASTC

May 1971

lines than specified by a direct LIMIT statement. By using LIMIT, a
program can be prevented from getting caught in a loop. It a prograa
gets in a loop, it is possible to get out by hitting the panic huntton -
CTRL~-SHIFT-P, A message 1is printed as 1if an error had occurred,
Execution can be resumed by typing CONTINUE,

There are t#wo ways to leave BASIC. These are the same statements as
are usad to leave the Fditor. ¢ means to quit and to destroy the
program that was created. F,fname saves the text of the projram on the
file specified so that it can be printed or loaded again later,

3.3_RENUMBERING_A_BASIC PROGRAM

To rearrande a sloopy BASIC program under CAL TSS, type RENUM ftname
vhere fname 1is the text file containing the program as a parameter
(e.g., RENUM PROG). Provided the program is a legal BASIC program, the
lines will be arranged in order of line number. Then RENUM asks +he
user if he wvants to renumber the program. If the response is a line
that begins with NO, PENUM returns to the Command Processor and th@]
program lines are sorted but ctherwise unchanged. Any other response
vill cause the lines specified to have the new line numbers specitieid
by the user. All references to these lines will also be chanqged to the
nev line numbers. The user indicates which lines are to be changed and
how, by responding to the four questions listed below. It is not
possible to renumber lines so that the execution order of the proqgranm
is changed. Tf that is attempted, there is an error. An appropriate
error message is typed and some or all of the questions are reasked,
The four gquestions take numbers as responses. Characters after the
first non—numeric, non-blank character are ignored, If the nunmber
typed 1is <zero or missing, the default value is used, The following
table gives the questions and their meaning in the order in which they
are asked.

FROM? Give the 1line number of the first line to
renumber, Default is the first 1line 1in the
progranm.

TO? Give the 1line number of the last line to
renumber. Default is the last 1line of the
program.

START? Give the number which the first renumbered

line is to have. Default is 100.

TNCREMENT? Give the increments by which the succeedinqg
line numbers are to differ. Default is 10,

19

Languages and Processors: BASIC

May 1971

. T . O —" - o S T S it . ——

4.1 BASIC STATEMENTS

The BASIC lanquage is also available under the batch system, CALIDOS-
COPE, in a slightly wmodified fora. The first and most obvious
difference 1is the absence of direct statements, since there is no
programmer—-machine interaction under a batch systen.

Batch BASIC has the same set of indirect statements as CAL TSS RASIC,
with the exclusion of the PAUSE statement which is not appropriate for
batch processing. However, two of the I/0 statements, INPUT and PRINT,
behave differently from their CAL TSS counterparts since there 1s no
teletype.

4,1.1 The INPUT_Statement

The TINPUT statement inputs values from cards immediately following the
BOR card wvwhich ends the program {see Section §4.2 Deck _Setup helow).
The data on the cards must he in the same format as they were in the
teletype lines under CAL TSS BASIC. Data cards are read until all the
variable addresses are satisfied. If only some of the values on a card
are used by the INPUT statement, the rest are saved for the next INPUT
statement. If a card contains a syntax error such as an illegal value,
e.d., One lacking a clesing queocte or with too large an exponent, the
card image, with blanks removed, 1is printed on the output fileset
folloved by an error message. Then the card 1image 1is discarded.
However, an error in type, such as specifying a number where a strinqg
belongs, is treated as an execution error.

It is possible for INPUT to read card images from a file other than the
fileset INPUT., The 2alternate fileset name is specified as the first
parameter of the control card used to load and execute BASIC (seer
Section 4,3 Fxecution).

4,1.2 The PRINT Statement

The PRINT statement interacts with the line printer in the same way as
it does with the teletype under CAL TS5 BASIC. Lines are =till

restricted ¢to a wmaximum of 72 characters. No carriage control
characters are needed since a blank for single spacing is inserted at
the beqginning of each line. The ou*tnut generated during execuntion

follows immediately after the listirg of the program generated by the
BASIC interpreter.

lanquaqges and Processors: BASIC

May 1971

4.2 DECK_SETUP

The program to be interpreted by BASIC must be punched onto cards, one
line per card. Every line must beqgin with a line number and if a card
is out of order (i.e., 1line numbers are not in segquential order
ignoring gaps), a warning message 1is printed below the card image on
the output fileset, and it is executed in the order specified by 1its
line number. If a syntax error is detected on a card, an error messag?
is printed below the card image and that card image is ignored. The
deck is set up as follows:

Jobk Card

COMMON, BRASIC.

LGO,BASIC[,input fnarmel.
FOR

[Program deck

EOR

{ Data cards, if any

EOJ

The cards for 1loading and executing the BASIC 1interpreter (thos=
between the Job Card and first EOR card) are subject to change., When
an BOR (7-R-9) card or an ECJ ({6-7-B-9) <card 1is read, the progran

begins execution.

4,3 EXECUTION

The program is executed even if compilation errors were detected; the
offending lires are simply ignored. TIf a fatal error occurs during
execution, all variables which have been assigned values and all arrays
which have been dimensioned are dumped to the output fileset. Values
are printed with seven significant digits. Arrays of 3 dimensions or
less are dumped as if a MAT PRTNT statement were being executed.
Arrays of nore dimensions are dumped as they are stored 1in menmory,
i.e., according to the formula:

14 (i~ +I¥(J-1) +TAT*(k—1) +T*T*K* {1-1) +. ...
where I,J,K,L... Aare the dimensions and i,j,kx,l... are the subscript
values for a giver element. Fcr examrle, if any array has 4 dimensions
{(3,3,3,3) and the desired element is (3,3,1,1), it will appear as the
9th value in the dump:

1+(3=-1)+3*%(3-1) + 3% 3% (1-1) +3%3% 3% {(1-1)=9,

Successive values are printed across the page in rows.

21

